Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material

A surface modification strategy through soaking in Na2S2O8 aqueous solution and then annealing has been developed for Li-rich layered cathode materials for Li-ion batteries. The modified materials have a significant improvement on electrochemical performances. The initial discharge capacity increase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2014-12, Vol.268, p.683-691
Hauptverfasser: Han, Shaojie, Qiu, Bao, Wei, Zhen, Xia, Yonggao, Liu, Zhaoping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 691
container_issue
container_start_page 683
container_title Journal of power sources
container_volume 268
creator Han, Shaojie
Qiu, Bao
Wei, Zhen
Xia, Yonggao
Liu, Zhaoping
description A surface modification strategy through soaking in Na2S2O8 aqueous solution and then annealing has been developed for Li-rich layered cathode materials for Li-ion batteries. The modified materials have a significant improvement on electrochemical performances. The initial discharge capacity increases from 257 to 285 mAh g−1, and the initial coulombic efficiency increases from 85.4% to 93.2% in the voltage rang of 2.0–4.6 V. The electrochemical enhancement mechanism has been revealed by detailed investigations on the surface structural conversion of the material. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectrometry (ICP) confirm that Na2S2O8 oxidizes lattice oxygen to formal O22− species and the corresponding Li+ is extracted from the material surface. On the subsequent annealing, the formal O22− species turn to O2 and release from the particle surface. The increased oxygen vacancies induce structural rearrangement and lead to the phase transition from layered (R-3m or C2/m) to spinel (Fd3m) at the particle surface, which is supported by X-Ray Diffraction (XRD) and high resolution transmission electron microscope (HRTEM). It is also found that the spinel phase increases with the increasing annealing temperature, and an internal structural evolution from LiM2O4-type spinel to M3O4-type spinel takes place at the same time. [Display omitted] •The surface structure transforms from layered to spinel during heat treatment.•The surface spinel undergoes an internal structural evolution at high temperature.•The electrochemical performances are obviously improved after heat treatment.•The mechanism of structural transformation is discussed.
doi_str_mv 10.1016/j.jpowsour.2014.06.106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642320633</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775314009707</els_id><sourcerecordid>1642320633</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-122ce995d5ff4af4b80ec62cac6dd5f613c8233d79f1c103edebc0ca97d9a2753</originalsourceid><addsrcrecordid>eNqNkc1u1DAUhS1EJYa2r4C8QWKTwT-JnexAFQWkSiyga8tzfa14lMSD7RTNu_CweDqlW9jY0udz77HOIeQNZ1vOuHq_3-4P8VeOa9oKxtstU5WrF2TDey0bobvuJdkwqftG606-Iq9z3jPGONdsQ35_X5O3gDSXtEJZk50oxOUBUw5xoXZxFCeEkiKMOAeoz7iMdgGccSl0d6Qj2kJLqucjiZ4-Kw8JG4dTKGOw5bTuUNdgzujoI1znJgUY6WSPmCoEW8bokM62YAp2uiIX3k4Zr5_uS3J_--nHzZfm7tvnrzcf7xpo26E0XAjAYehc531rfbvrGYISYEG5yhSX0AspnR48B84kOtwBAztoN9iaj7wk78576_9-rpiLmUMGnCa7YFyz4aoVUjAl5X9IOVdSd7qtUnWWQoo5J_TmkMJs09FwZk7Nmb3525w5NWeYqlzVwbdPHjbXGH2qcYf8PC16pUXXngw-nHVYs3kImEyGgLUaF1KtzLgY_mX1B5QNuEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611637574</pqid></control><display><type>article</type><title>Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material</title><source>Access via ScienceDirect (Elsevier)</source><creator>Han, Shaojie ; Qiu, Bao ; Wei, Zhen ; Xia, Yonggao ; Liu, Zhaoping</creator><creatorcontrib>Han, Shaojie ; Qiu, Bao ; Wei, Zhen ; Xia, Yonggao ; Liu, Zhaoping</creatorcontrib><description>A surface modification strategy through soaking in Na2S2O8 aqueous solution and then annealing has been developed for Li-rich layered cathode materials for Li-ion batteries. The modified materials have a significant improvement on electrochemical performances. The initial discharge capacity increases from 257 to 285 mAh g−1, and the initial coulombic efficiency increases from 85.4% to 93.2% in the voltage rang of 2.0–4.6 V. The electrochemical enhancement mechanism has been revealed by detailed investigations on the surface structural conversion of the material. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectrometry (ICP) confirm that Na2S2O8 oxidizes lattice oxygen to formal O22− species and the corresponding Li+ is extracted from the material surface. On the subsequent annealing, the formal O22− species turn to O2 and release from the particle surface. The increased oxygen vacancies induce structural rearrangement and lead to the phase transition from layered (R-3m or C2/m) to spinel (Fd3m) at the particle surface, which is supported by X-Ray Diffraction (XRD) and high resolution transmission electron microscope (HRTEM). It is also found that the spinel phase increases with the increasing annealing temperature, and an internal structural evolution from LiM2O4-type spinel to M3O4-type spinel takes place at the same time. [Display omitted] •The surface structure transforms from layered to spinel during heat treatment.•The surface spinel undergoes an internal structural evolution at high temperature.•The electrochemical performances are obviously improved after heat treatment.•The mechanism of structural transformation is discussed.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.06.106</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Annealing ; Applied sciences ; Cathode materials ; Cathodes ; Conversion ; Direct energy conversion and energy accumulation ; Electric potential ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Exact sciences and technology ; Lithium ion batteries ; Lithium-rich ; Materials ; Spinel ; Spinel structure ; Surface modification ; Texts ; X-ray photoelectron spectroscopy ; X-rays</subject><ispartof>Journal of power sources, 2014-12, Vol.268, p.683-691</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-122ce995d5ff4af4b80ec62cac6dd5f613c8233d79f1c103edebc0ca97d9a2753</citedby><cites>FETCH-LOGICAL-c449t-122ce995d5ff4af4b80ec62cac6dd5f613c8233d79f1c103edebc0ca97d9a2753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jpowsour.2014.06.106$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28672544$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Han, Shaojie</creatorcontrib><creatorcontrib>Qiu, Bao</creatorcontrib><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><title>Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material</title><title>Journal of power sources</title><description>A surface modification strategy through soaking in Na2S2O8 aqueous solution and then annealing has been developed for Li-rich layered cathode materials for Li-ion batteries. The modified materials have a significant improvement on electrochemical performances. The initial discharge capacity increases from 257 to 285 mAh g−1, and the initial coulombic efficiency increases from 85.4% to 93.2% in the voltage rang of 2.0–4.6 V. The electrochemical enhancement mechanism has been revealed by detailed investigations on the surface structural conversion of the material. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectrometry (ICP) confirm that Na2S2O8 oxidizes lattice oxygen to formal O22− species and the corresponding Li+ is extracted from the material surface. On the subsequent annealing, the formal O22− species turn to O2 and release from the particle surface. The increased oxygen vacancies induce structural rearrangement and lead to the phase transition from layered (R-3m or C2/m) to spinel (Fd3m) at the particle surface, which is supported by X-Ray Diffraction (XRD) and high resolution transmission electron microscope (HRTEM). It is also found that the spinel phase increases with the increasing annealing temperature, and an internal structural evolution from LiM2O4-type spinel to M3O4-type spinel takes place at the same time. [Display omitted] •The surface structure transforms from layered to spinel during heat treatment.•The surface spinel undergoes an internal structural evolution at high temperature.•The electrochemical performances are obviously improved after heat treatment.•The mechanism of structural transformation is discussed.</description><subject>Annealing</subject><subject>Applied sciences</subject><subject>Cathode materials</subject><subject>Cathodes</subject><subject>Conversion</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Electric potential</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Exact sciences and technology</subject><subject>Lithium ion batteries</subject><subject>Lithium-rich</subject><subject>Materials</subject><subject>Spinel</subject><subject>Spinel structure</subject><subject>Surface modification</subject><subject>Texts</subject><subject>X-ray photoelectron spectroscopy</subject><subject>X-rays</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkc1u1DAUhS1EJYa2r4C8QWKTwT-JnexAFQWkSiyga8tzfa14lMSD7RTNu_CweDqlW9jY0udz77HOIeQNZ1vOuHq_3-4P8VeOa9oKxtstU5WrF2TDey0bobvuJdkwqftG606-Iq9z3jPGONdsQ35_X5O3gDSXtEJZk50oxOUBUw5xoXZxFCeEkiKMOAeoz7iMdgGccSl0d6Qj2kJLqucjiZ4-Kw8JG4dTKGOw5bTuUNdgzujoI1znJgUY6WSPmCoEW8bokM62YAp2uiIX3k4Zr5_uS3J_--nHzZfm7tvnrzcf7xpo26E0XAjAYehc531rfbvrGYISYEG5yhSX0AspnR48B84kOtwBAztoN9iaj7wk78576_9-rpiLmUMGnCa7YFyz4aoVUjAl5X9IOVdSd7qtUnWWQoo5J_TmkMJs09FwZk7Nmb3525w5NWeYqlzVwbdPHjbXGH2qcYf8PC16pUXXngw-nHVYs3kImEyGgLUaF1KtzLgY_mX1B5QNuEA</recordid><startdate>20141205</startdate><enddate>20141205</enddate><creator>Han, Shaojie</creator><creator>Qiu, Bao</creator><creator>Wei, Zhen</creator><creator>Xia, Yonggao</creator><creator>Liu, Zhaoping</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141205</creationdate><title>Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material</title><author>Han, Shaojie ; Qiu, Bao ; Wei, Zhen ; Xia, Yonggao ; Liu, Zhaoping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-122ce995d5ff4af4b80ec62cac6dd5f613c8233d79f1c103edebc0ca97d9a2753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Applied sciences</topic><topic>Cathode materials</topic><topic>Cathodes</topic><topic>Conversion</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Electric potential</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Exact sciences and technology</topic><topic>Lithium ion batteries</topic><topic>Lithium-rich</topic><topic>Materials</topic><topic>Spinel</topic><topic>Spinel structure</topic><topic>Surface modification</topic><topic>Texts</topic><topic>X-ray photoelectron spectroscopy</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Han, Shaojie</creatorcontrib><creatorcontrib>Qiu, Bao</creatorcontrib><creatorcontrib>Wei, Zhen</creatorcontrib><creatorcontrib>Xia, Yonggao</creatorcontrib><creatorcontrib>Liu, Zhaoping</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Han, Shaojie</au><au>Qiu, Bao</au><au>Wei, Zhen</au><au>Xia, Yonggao</au><au>Liu, Zhaoping</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material</atitle><jtitle>Journal of power sources</jtitle><date>2014-12-05</date><risdate>2014</risdate><volume>268</volume><spage>683</spage><epage>691</epage><pages>683-691</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>A surface modification strategy through soaking in Na2S2O8 aqueous solution and then annealing has been developed for Li-rich layered cathode materials for Li-ion batteries. The modified materials have a significant improvement on electrochemical performances. The initial discharge capacity increases from 257 to 285 mAh g−1, and the initial coulombic efficiency increases from 85.4% to 93.2% in the voltage rang of 2.0–4.6 V. The electrochemical enhancement mechanism has been revealed by detailed investigations on the surface structural conversion of the material. X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma-atomic emission spectrometry (ICP) confirm that Na2S2O8 oxidizes lattice oxygen to formal O22− species and the corresponding Li+ is extracted from the material surface. On the subsequent annealing, the formal O22− species turn to O2 and release from the particle surface. The increased oxygen vacancies induce structural rearrangement and lead to the phase transition from layered (R-3m or C2/m) to spinel (Fd3m) at the particle surface, which is supported by X-Ray Diffraction (XRD) and high resolution transmission electron microscope (HRTEM). It is also found that the spinel phase increases with the increasing annealing temperature, and an internal structural evolution from LiM2O4-type spinel to M3O4-type spinel takes place at the same time. [Display omitted] •The surface structure transforms from layered to spinel during heat treatment.•The surface spinel undergoes an internal structural evolution at high temperature.•The electrochemical performances are obviously improved after heat treatment.•The mechanism of structural transformation is discussed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2014.06.106</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2014-12, Vol.268, p.683-691
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_1642320633
source Access via ScienceDirect (Elsevier)
subjects Annealing
Applied sciences
Cathode materials
Cathodes
Conversion
Direct energy conversion and energy accumulation
Electric potential
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Exact sciences and technology
Lithium ion batteries
Lithium-rich
Materials
Spinel
Spinel structure
Surface modification
Texts
X-ray photoelectron spectroscopy
X-rays
title Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A16%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20structural%20conversion%20and%20electrochemical%20enhancement%20by%20heat%20treatment%20of%20chemical%20pre-delithiation%20processed%20lithium-rich%20layered%20cathode%20material&rft.jtitle=Journal%20of%20power%20sources&rft.au=Han,%20Shaojie&rft.date=2014-12-05&rft.volume=268&rft.spage=683&rft.epage=691&rft.pages=683-691&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.06.106&rft_dat=%3Cproquest_cross%3E1642320633%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611637574&rft_id=info:pmid/&rft_els_id=S0378775314009707&rfr_iscdi=true