Entrainment in plane turbulent pure plumes
Turbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called e...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2014-09, Vol.755, p.np-np, Article R2 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | |
container_start_page | np |
container_title | Journal of fluid mechanics |
container_volume | 755 |
creator | Paillat, S. Kaminski, E. |
description | Turbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called entrainment coefficient,
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha $
, which quantifies entrainment of ambient fluid into the turbulent flow. This key parameter is well characterized for axisymmetric jets and plumes, but data are scarcer for turbulent planar plumes and jets. The data tend to show that the Gaussian entrainment coefficient in plane pure plumes is about twice the value for plane pure jets. In order to confirm and to explain this difference, we develop a model of entrainment in turbulent plane jets and plumes taking into account the effect of buoyancy on entrainment, as a function of the shape of the velocity, buoyancy and turbulent shear stress profiles. We perform new experiments to better characterize the rate of entrainment in plane pure plumes and to constrain the values of the model parameters. Comparison between theory and experiments shows that the enhancement of entrainment in plane turbulent pure plumes relative to plane turbulent pure jets is well explained by the contribution of buoyancy. |
doi_str_mv | 10.1017/jfm.2014.424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642320314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_424</cupid><sourcerecordid>1642320314</sourcerecordid><originalsourceid>FETCH-LOGICAL-c504t-5f54d7cbed9a2483eb223f58157143d48c84dc2f46a4abf2ff71d1575f949f2f3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK7e_AALXkRszSSTtD3KsqvCghc9h7RNpEv_mTQHv70puwcRwdMwM795vHmEXANNgUL2sLddyihgigxPyAJQFkkmUZySBaWMJQCMnpML7_eUAqdFtiB3m35yuuk700-rpl-Nre7NagquDO08GoMzcRg64y_JmdWtN1fHuiTv283b-jnZvT69rB93SSUoTomwAuusKk1daIY5NyVj3IocRAbIa8yrHOuKWZQadWmZtRnUcSlsgUVs-ZLcHnRHN3wG4yfVNb4y7exsCF6BRMYZ5VHtX1RImQtORR7Rm1_ofgiuj49ESnAoZHQYqfsDVbnBe2esGl3TafelgKo5YxUzVnPGKmYc8fSI6650Tf1hfqj-dfAN9E98Bw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553196815</pqid></control><display><type>article</type><title>Entrainment in plane turbulent pure plumes</title><source>Cambridge University Press Journals Complete</source><creator>Paillat, S. ; Kaminski, E.</creator><creatorcontrib>Paillat, S. ; Kaminski, E.</creatorcontrib><description>Turbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called entrainment coefficient,
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha $
, which quantifies entrainment of ambient fluid into the turbulent flow. This key parameter is well characterized for axisymmetric jets and plumes, but data are scarcer for turbulent planar plumes and jets. The data tend to show that the Gaussian entrainment coefficient in plane pure plumes is about twice the value for plane pure jets. In order to confirm and to explain this difference, we develop a model of entrainment in turbulent plane jets and plumes taking into account the effect of buoyancy on entrainment, as a function of the shape of the velocity, buoyancy and turbulent shear stress profiles. We perform new experiments to better characterize the rate of entrainment in plane pure plumes and to constrain the values of the model parameters. Comparison between theory and experiments shows that the enhancement of entrainment in plane turbulent pure plumes relative to plane turbulent pure jets is well explained by the contribution of buoyancy.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.424</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Buoyancy ; Computational fluid dynamics ; Entrainment ; Fluid flow ; Fluid mechanics ; Geophysics ; Jets ; Natural environment ; Planes ; Plumes ; Rapids ; Shear stress ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2014-09, Vol.755, p.np-np, Article R2</ispartof><rights>2014 Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c504t-5f54d7cbed9a2483eb223f58157143d48c84dc2f46a4abf2ff71d1575f949f2f3</citedby><cites>FETCH-LOGICAL-c504t-5f54d7cbed9a2483eb223f58157143d48c84dc2f46a4abf2ff71d1575f949f2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014004248/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27903,27904,55606</link.rule.ids></links><search><creatorcontrib>Paillat, S.</creatorcontrib><creatorcontrib>Kaminski, E.</creatorcontrib><title>Entrainment in plane turbulent pure plumes</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Turbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called entrainment coefficient,
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha $
, which quantifies entrainment of ambient fluid into the turbulent flow. This key parameter is well characterized for axisymmetric jets and plumes, but data are scarcer for turbulent planar plumes and jets. The data tend to show that the Gaussian entrainment coefficient in plane pure plumes is about twice the value for plane pure jets. In order to confirm and to explain this difference, we develop a model of entrainment in turbulent plane jets and plumes taking into account the effect of buoyancy on entrainment, as a function of the shape of the velocity, buoyancy and turbulent shear stress profiles. We perform new experiments to better characterize the rate of entrainment in plane pure plumes and to constrain the values of the model parameters. Comparison between theory and experiments shows that the enhancement of entrainment in plane turbulent pure plumes relative to plane turbulent pure jets is well explained by the contribution of buoyancy.</description><subject>Buoyancy</subject><subject>Computational fluid dynamics</subject><subject>Entrainment</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Geophysics</subject><subject>Jets</subject><subject>Natural environment</subject><subject>Planes</subject><subject>Plumes</subject><subject>Rapids</subject><subject>Shear stress</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkE9LxDAQxYMouK7e_AALXkRszSSTtD3KsqvCghc9h7RNpEv_mTQHv70puwcRwdMwM795vHmEXANNgUL2sLddyihgigxPyAJQFkkmUZySBaWMJQCMnpML7_eUAqdFtiB3m35yuuk700-rpl-Nre7NagquDO08GoMzcRg64y_JmdWtN1fHuiTv283b-jnZvT69rB93SSUoTomwAuusKk1daIY5NyVj3IocRAbIa8yrHOuKWZQadWmZtRnUcSlsgUVs-ZLcHnRHN3wG4yfVNb4y7exsCF6BRMYZ5VHtX1RImQtORR7Rm1_ofgiuj49ESnAoZHQYqfsDVbnBe2esGl3TafelgKo5YxUzVnPGKmYc8fSI6650Tf1hfqj-dfAN9E98Bw</recordid><startdate>20140925</startdate><enddate>20140925</enddate><creator>Paillat, S.</creator><creator>Kaminski, E.</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20140925</creationdate><title>Entrainment in plane turbulent pure plumes</title><author>Paillat, S. ; Kaminski, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c504t-5f54d7cbed9a2483eb223f58157143d48c84dc2f46a4abf2ff71d1575f949f2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Buoyancy</topic><topic>Computational fluid dynamics</topic><topic>Entrainment</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Geophysics</topic><topic>Jets</topic><topic>Natural environment</topic><topic>Planes</topic><topic>Plumes</topic><topic>Rapids</topic><topic>Shear stress</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paillat, S.</creatorcontrib><creatorcontrib>Kaminski, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paillat, S.</au><au>Kaminski, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entrainment in plane turbulent pure plumes</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-09-25</date><risdate>2014</risdate><volume>755</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><artnum>R2</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Turbulent jets and plumes are commonly encountered in industrial and natural environments; they are, for example, key processes during explosive eruptions. They have been the objects of seminal works on turbulent free shear flows. Their dynamics is often described with the concept of the so-called entrainment coefficient,
$\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}\alpha $
, which quantifies entrainment of ambient fluid into the turbulent flow. This key parameter is well characterized for axisymmetric jets and plumes, but data are scarcer for turbulent planar plumes and jets. The data tend to show that the Gaussian entrainment coefficient in plane pure plumes is about twice the value for plane pure jets. In order to confirm and to explain this difference, we develop a model of entrainment in turbulent plane jets and plumes taking into account the effect of buoyancy on entrainment, as a function of the shape of the velocity, buoyancy and turbulent shear stress profiles. We perform new experiments to better characterize the rate of entrainment in plane pure plumes and to constrain the values of the model parameters. Comparison between theory and experiments shows that the enhancement of entrainment in plane turbulent pure plumes relative to plane turbulent pure jets is well explained by the contribution of buoyancy.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.424</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2014-09, Vol.755, p.np-np, Article R2 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642320314 |
source | Cambridge University Press Journals Complete |
subjects | Buoyancy Computational fluid dynamics Entrainment Fluid flow Fluid mechanics Geophysics Jets Natural environment Planes Plumes Rapids Shear stress Turbulence Turbulent flow |
title | Entrainment in plane turbulent pure plumes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A51%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entrainment%20in%20plane%20turbulent%20pure%20plumes&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Paillat,%20S.&rft.date=2014-09-25&rft.volume=755&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.artnum=R2&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2014.424&rft_dat=%3Cproquest_cross%3E1642320314%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553196815&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_424&rfr_iscdi=true |