Hydrodynamic forces acting on pipe bends in gas–liquid slug flow

•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The phy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering research & design 2014-05, Vol.92 (5), p.812-825
Hauptverfasser: Tay, Boon Li, Thorpe, Rex B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 825
container_issue 5
container_start_page 812
container_title Chemical engineering research & design
container_volume 92
creator Tay, Boon Li
Thorpe, Rex B.
description •A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature. In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.
doi_str_mv 10.1016/j.cherd.2013.08.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642319280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876213003419</els_id><sourcerecordid>1642319280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqXwBCweWRL8n2RgAAQUqRILzJZj3xRXadzaCagb78Ab8iSklBmmO9zvHOl8CJ1TklNC1eUyt68QXc4I5Tkpc0LZAZrQQoiMS8UP0YQwxbOyUOwYnaS0JISM33KCbmZbF4PbdmblLW5CtJCwsb3vFjh0eO3XgGvoXMK-wwuTvj4-W78ZvMOpHRa4acP7KTpqTJvg7PdO0cv93fPtLJs_PTzeXs8zK4jqs5q5RhohSuIKgIrQppLCKSGkbKgwtRuXFFBUAGxEawKyNkZA7WTJpa0Zn6KLfe86hs0Aqdcrnyy0rekgDElTJRinFSvJ_6iUlSokF9WI8j1qY0gpQqPX0a9M3GpK9E6uXuofuXonV5NSj3LH1NU-BePgNw9RJ-uhs-B8BNtrF_yf-W_VUoRC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559675349</pqid></control><display><type>article</type><title>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</title><source>Elsevier ScienceDirect Journals</source><creator>Tay, Boon Li ; Thorpe, Rex B.</creator><creatorcontrib>Tay, Boon Li ; Thorpe, Rex B.</creatorcontrib><description>•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature. In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2013.08.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bend ; Chemical engineering ; Chemical engineers ; Computational fluid dynamics ; Design engineering ; Force ; Hydrodynamics ; Mathematical models ; Momentum transfer ; Multiphase flow ; Pipe bends ; Pistons ; Slug flow ; Transient response</subject><ispartof>Chemical engineering research &amp; design, 2014-05, Vol.92 (5), p.812-825</ispartof><rights>2013 The Institution of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</citedby><cites>FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263876213003419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tay, Boon Li</creatorcontrib><creatorcontrib>Thorpe, Rex B.</creatorcontrib><title>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</title><title>Chemical engineering research &amp; design</title><description>•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature. In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.</description><subject>Bend</subject><subject>Chemical engineering</subject><subject>Chemical engineers</subject><subject>Computational fluid dynamics</subject><subject>Design engineering</subject><subject>Force</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Multiphase flow</subject><subject>Pipe bends</subject><subject>Pistons</subject><subject>Slug flow</subject><subject>Transient response</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqXwBCweWRL8n2RgAAQUqRILzJZj3xRXadzaCagb78Ab8iSklBmmO9zvHOl8CJ1TklNC1eUyt68QXc4I5Tkpc0LZAZrQQoiMS8UP0YQwxbOyUOwYnaS0JISM33KCbmZbF4PbdmblLW5CtJCwsb3vFjh0eO3XgGvoXMK-wwuTvj4-W78ZvMOpHRa4acP7KTpqTJvg7PdO0cv93fPtLJs_PTzeXs8zK4jqs5q5RhohSuIKgIrQppLCKSGkbKgwtRuXFFBUAGxEawKyNkZA7WTJpa0Zn6KLfe86hs0Aqdcrnyy0rekgDElTJRinFSvJ_6iUlSokF9WI8j1qY0gpQqPX0a9M3GpK9E6uXuofuXonV5NSj3LH1NU-BePgNw9RJ-uhs-B8BNtrF_yf-W_VUoRC</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Tay, Boon Li</creator><creator>Thorpe, Rex B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</title><author>Tay, Boon Li ; Thorpe, Rex B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bend</topic><topic>Chemical engineering</topic><topic>Chemical engineers</topic><topic>Computational fluid dynamics</topic><topic>Design engineering</topic><topic>Force</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Multiphase flow</topic><topic>Pipe bends</topic><topic>Pistons</topic><topic>Slug flow</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tay, Boon Li</creatorcontrib><creatorcontrib>Thorpe, Rex B.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering research &amp; design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tay, Boon Li</au><au>Thorpe, Rex B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</atitle><jtitle>Chemical engineering research &amp; design</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>92</volume><issue>5</issue><spage>812</spage><epage>825</epage><pages>812-825</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature. In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2013.08.012</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8762
ispartof Chemical engineering research & design, 2014-05, Vol.92 (5), p.812-825
issn 0263-8762
1744-3563
language eng
recordid cdi_proquest_miscellaneous_1642319280
source Elsevier ScienceDirect Journals
subjects Bend
Chemical engineering
Chemical engineers
Computational fluid dynamics
Design engineering
Force
Hydrodynamics
Mathematical models
Momentum transfer
Multiphase flow
Pipe bends
Pistons
Slug flow
Transient response
title Hydrodynamic forces acting on pipe bends in gas–liquid slug flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20forces%20acting%20on%20pipe%20bends%20in%20gas%E2%80%93liquid%20slug%20flow&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Tay,%20Boon%20Li&rft.date=2014-05-01&rft.volume=92&rft.issue=5&rft.spage=812&rft.epage=825&rft.pages=812-825&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2013.08.012&rft_dat=%3Cproquest_cross%3E1642319280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559675349&rft_id=info:pmid/&rft_els_id=S0263876213003419&rfr_iscdi=true