Hydrodynamic forces acting on pipe bends in gas–liquid slug flow
•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The phy...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2014-05, Vol.92 (5), p.812-825 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 825 |
---|---|
container_issue | 5 |
container_start_page | 812 |
container_title | Chemical engineering research & design |
container_volume | 92 |
creator | Tay, Boon Li Thorpe, Rex B. |
description | •A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature.
In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements. |
doi_str_mv | 10.1016/j.cherd.2013.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642319280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263876213003419</els_id><sourcerecordid>1642319280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqXwBCweWRL8n2RgAAQUqRILzJZj3xRXadzaCagb78Ab8iSklBmmO9zvHOl8CJ1TklNC1eUyt68QXc4I5Tkpc0LZAZrQQoiMS8UP0YQwxbOyUOwYnaS0JISM33KCbmZbF4PbdmblLW5CtJCwsb3vFjh0eO3XgGvoXMK-wwuTvj4-W78ZvMOpHRa4acP7KTpqTJvg7PdO0cv93fPtLJs_PTzeXs8zK4jqs5q5RhohSuIKgIrQppLCKSGkbKgwtRuXFFBUAGxEawKyNkZA7WTJpa0Zn6KLfe86hs0Aqdcrnyy0rekgDElTJRinFSvJ_6iUlSokF9WI8j1qY0gpQqPX0a9M3GpK9E6uXuofuXonV5NSj3LH1NU-BePgNw9RJ-uhs-B8BNtrF_yf-W_VUoRC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1559675349</pqid></control><display><type>article</type><title>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</title><source>Elsevier ScienceDirect Journals</source><creator>Tay, Boon Li ; Thorpe, Rex B.</creator><creatorcontrib>Tay, Boon Li ; Thorpe, Rex B.</creatorcontrib><description>•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature.
In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.</description><identifier>ISSN: 0263-8762</identifier><identifier>EISSN: 1744-3563</identifier><identifier>DOI: 10.1016/j.cherd.2013.08.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bend ; Chemical engineering ; Chemical engineers ; Computational fluid dynamics ; Design engineering ; Force ; Hydrodynamics ; Mathematical models ; Momentum transfer ; Multiphase flow ; Pipe bends ; Pistons ; Slug flow ; Transient response</subject><ispartof>Chemical engineering research & design, 2014-05, Vol.92 (5), p.812-825</ispartof><rights>2013 The Institution of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</citedby><cites>FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0263876213003419$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tay, Boon Li</creatorcontrib><creatorcontrib>Thorpe, Rex B.</creatorcontrib><title>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</title><title>Chemical engineering research & design</title><description>•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature.
In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.</description><subject>Bend</subject><subject>Chemical engineering</subject><subject>Chemical engineers</subject><subject>Computational fluid dynamics</subject><subject>Design engineering</subject><subject>Force</subject><subject>Hydrodynamics</subject><subject>Mathematical models</subject><subject>Momentum transfer</subject><subject>Multiphase flow</subject><subject>Pipe bends</subject><subject>Pistons</subject><subject>Slug flow</subject><subject>Transient response</subject><issn>0263-8762</issn><issn>1744-3563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkL1OwzAUhS0EEqXwBCweWRL8n2RgAAQUqRILzJZj3xRXadzaCagb78Ab8iSklBmmO9zvHOl8CJ1TklNC1eUyt68QXc4I5Tkpc0LZAZrQQoiMS8UP0YQwxbOyUOwYnaS0JISM33KCbmZbF4PbdmblLW5CtJCwsb3vFjh0eO3XgGvoXMK-wwuTvj4-W78ZvMOpHRa4acP7KTpqTJvg7PdO0cv93fPtLJs_PTzeXs8zK4jqs5q5RhohSuIKgIrQppLCKSGkbKgwtRuXFFBUAGxEawKyNkZA7WTJpa0Zn6KLfe86hs0Aqdcrnyy0rekgDElTJRinFSvJ_6iUlSokF9WI8j1qY0gpQqPX0a9M3GpK9E6uXuofuXonV5NSj3LH1NU-BePgNw9RJ-uhs-B8BNtrF_yf-W_VUoRC</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Tay, Boon Li</creator><creator>Thorpe, Rex B.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</title><author>Tay, Boon Li ; Thorpe, Rex B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-b2df5a4480d7ee901f954d64455f14abd1017e79ee2b2db0e5baa4ebd5835cb23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bend</topic><topic>Chemical engineering</topic><topic>Chemical engineers</topic><topic>Computational fluid dynamics</topic><topic>Design engineering</topic><topic>Force</topic><topic>Hydrodynamics</topic><topic>Mathematical models</topic><topic>Momentum transfer</topic><topic>Multiphase flow</topic><topic>Pipe bends</topic><topic>Pistons</topic><topic>Slug flow</topic><topic>Transient response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tay, Boon Li</creatorcontrib><creatorcontrib>Thorpe, Rex B.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering research & design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tay, Boon Li</au><au>Thorpe, Rex B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamic forces acting on pipe bends in gas–liquid slug flow</atitle><jtitle>Chemical engineering research & design</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>92</volume><issue>5</issue><spage>812</spage><epage>825</epage><pages>812-825</pages><issn>0263-8762</issn><eissn>1744-3563</eissn><abstract>•A transient, isothermal model has been developed to predict the forces.•The model is based on the unsteady-state momentum equation.•Validation of the one-dimensional, transient theoretical model has been done.•The predictions agreed well with our experimental result for air–water slug flow.•The physical reasoning explains the experimental results from the literature.
In this paper, a one-dimensional, transient theoretical model, the Piston Flow Model (PFM), based on momentum analysis, is proposed to predict the time dependent forces acting on horizontal pipe bends in slug flow. Our experimental apparatus is described and results there from are presented. The PFM has been validated by comparing its predictions with our experimental results for air–water slug flow. The pressure traces, force traces and maximum force predicted agree well with our measurements.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cherd.2013.08.012</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8762 |
ispartof | Chemical engineering research & design, 2014-05, Vol.92 (5), p.812-825 |
issn | 0263-8762 1744-3563 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642319280 |
source | Elsevier ScienceDirect Journals |
subjects | Bend Chemical engineering Chemical engineers Computational fluid dynamics Design engineering Force Hydrodynamics Mathematical models Momentum transfer Multiphase flow Pipe bends Pistons Slug flow Transient response |
title | Hydrodynamic forces acting on pipe bends in gas–liquid slug flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T22%3A47%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamic%20forces%20acting%20on%20pipe%20bends%20in%20gas%E2%80%93liquid%20slug%20flow&rft.jtitle=Chemical%20engineering%20research%20&%20design&rft.au=Tay,%20Boon%20Li&rft.date=2014-05-01&rft.volume=92&rft.issue=5&rft.spage=812&rft.epage=825&rft.pages=812-825&rft.issn=0263-8762&rft.eissn=1744-3563&rft_id=info:doi/10.1016/j.cherd.2013.08.012&rft_dat=%3Cproquest_cross%3E1642319280%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1559675349&rft_id=info:pmid/&rft_els_id=S0263876213003419&rfr_iscdi=true |