The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir

•We explore the physical and physiological processes of a Microcystis bloom event.•ELCOM–CAEDYM is extended to include buoyancy control dynamics for cyanobacteria.•Thermal stability, phosphorus availability, and buoyancy control are identified as key factors.•Inclusion of the buoyancy control consid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2014-10, Vol.289, p.133-149
Hauptverfasser: Chung, S.W., Imberger, J., Hipsey, M.R., Lee, H.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 149
container_issue
container_start_page 133
container_title Ecological modelling
container_volume 289
creator Chung, S.W.
Imberger, J.
Hipsey, M.R.
Lee, H.S.
description •We explore the physical and physiological processes of a Microcystis bloom event.•ELCOM–CAEDYM is extended to include buoyancy control dynamics for cyanobacteria.•Thermal stability, phosphorus availability, and buoyancy control are identified as key factors.•Inclusion of the buoyancy control considerably improves the model predictability.•Higher surface concentration occurs when buoyancy control is taken into account. A three-dimensional coupled hydrodynamic and ecological model, ELCOM–CAEDYM, was extended to include buoyancy control dynamics for cyanobacteria, and validated in the stratified Daecheong Reservoir (Korea). Specifically, the model was used to explore the physical and biological processes that determined the temporal and spatial variability of Microcystis aeruginosa (hereafter Microcystis) biomass during an abnormally intense mono-specific bloom event. Inclusion of the buoyancy control function within the coupled model considerably improved the model predictability by capturing the biomass accumulation at the surface during the bloom, and the shift of the dominant group from green algae to cyanobacteria. Results indicated that physical processes, particularly inflow mixing, played a dominant role in determining the spatial heterogeneity of Microcystis biomass through the local control of nutrient availability. In addition, the shallow mixed layer depth (zm) relative to the euphotic depth (zp) under a stable thermal stratification provided a perfect physical habitat for the dominance of this cyanobacteria relative to other species, due to their buoyancy control capability. This work demonstrates that the coupled hydrodynamic and ecological modeling has advanced to a stage where it may be used to interpret field data and subject to a suitable level of validation, the model may be used as a management decision support tool.
doi_str_mv 10.1016/j.ecolmodel.2014.07.010
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642318195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380014003378</els_id><sourcerecordid>1642318195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-e27dfee7d26f0828b7c38071406f5197dd61b003e8cf7911adbe35a381693283</originalsourceid><addsrcrecordid>eNqNUcFuEzEQtSqQCIVvYC9IXHY79m5s77GqgFZqxSV3y7HHjSNnnXo2lXLmx3FI1CucRjN-b57fPMa-cOg4cHmz7dDltMseUyeADx2oDjhcsQXXSrQKhHzHFtDD0PYa4AP7SLQFAC60WLDfqw02cQrpgJPDJodmvzlSdDY1dvLnJqf8_HeyL9khEVKTp2auRNrbOdaHDc5Y8jNOGOfjaYltnqKr6CPNkZp1ynlXVeqY5lIpIaJvChKW1xzLJ_Y-2ET4-VKv2erH99Xdffv46-fD3e1j65aDmlsUygdE5YUMoIVeK1cNKT6ADEs-Ku8lXwP0qF1QI-fWr7Ff2l5zOfZC99fs23lttfFyQJrNLpLDlOyE-UCGy0H0XPNx-R9QoUYJWvUVqs7QapeoYDD7Ene2HA0HcwrIbM1bQOYUkAFlakCV-fUiYqleNxQ7uUhvdKGlvvz79ozDepvXiMWQi6e0fCzoZuNz_KfWH38trMI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627960873</pqid></control><display><type>article</type><title>The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Chung, S.W. ; Imberger, J. ; Hipsey, M.R. ; Lee, H.S.</creator><creatorcontrib>Chung, S.W. ; Imberger, J. ; Hipsey, M.R. ; Lee, H.S.</creatorcontrib><description>•We explore the physical and physiological processes of a Microcystis bloom event.•ELCOM–CAEDYM is extended to include buoyancy control dynamics for cyanobacteria.•Thermal stability, phosphorus availability, and buoyancy control are identified as key factors.•Inclusion of the buoyancy control considerably improves the model predictability.•Higher surface concentration occurs when buoyancy control is taken into account. A three-dimensional coupled hydrodynamic and ecological model, ELCOM–CAEDYM, was extended to include buoyancy control dynamics for cyanobacteria, and validated in the stratified Daecheong Reservoir (Korea). Specifically, the model was used to explore the physical and biological processes that determined the temporal and spatial variability of Microcystis aeruginosa (hereafter Microcystis) biomass during an abnormally intense mono-specific bloom event. Inclusion of the buoyancy control function within the coupled model considerably improved the model predictability by capturing the biomass accumulation at the surface during the bloom, and the shift of the dominant group from green algae to cyanobacteria. Results indicated that physical processes, particularly inflow mixing, played a dominant role in determining the spatial heterogeneity of Microcystis biomass through the local control of nutrient availability. In addition, the shallow mixed layer depth (zm) relative to the euphotic depth (zp) under a stable thermal stratification provided a perfect physical habitat for the dominance of this cyanobacteria relative to other species, due to their buoyancy control capability. This work demonstrates that the coupled hydrodynamic and ecological modeling has advanced to a stage where it may be used to interpret field data and subject to a suitable level of validation, the model may be used as a management decision support tool.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2014.07.010</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Animal, plant and microbial ecology ; Biological and medical sciences ; Biomass ; Buoyancy ; Buoyancy control ; Coupled physical–ecological model ; Cyanobacteria ; Daecheong reservoir ; Ecology ; ELCOM–CAEDYM ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Heterogeneity ; Joining ; Mathematical models ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Microcystis ; Microcystis aeruginosa ; Spatial heterogeneity</subject><ispartof>Ecological modelling, 2014-10, Vol.289, p.133-149</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-e27dfee7d26f0828b7c38071406f5197dd61b003e8cf7911adbe35a381693283</citedby><cites>FETCH-LOGICAL-c547t-e27dfee7d26f0828b7c38071406f5197dd61b003e8cf7911adbe35a381693283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304380014003378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28689328$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chung, S.W.</creatorcontrib><creatorcontrib>Imberger, J.</creatorcontrib><creatorcontrib>Hipsey, M.R.</creatorcontrib><creatorcontrib>Lee, H.S.</creatorcontrib><title>The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir</title><title>Ecological modelling</title><description>•We explore the physical and physiological processes of a Microcystis bloom event.•ELCOM–CAEDYM is extended to include buoyancy control dynamics for cyanobacteria.•Thermal stability, phosphorus availability, and buoyancy control are identified as key factors.•Inclusion of the buoyancy control considerably improves the model predictability.•Higher surface concentration occurs when buoyancy control is taken into account. A three-dimensional coupled hydrodynamic and ecological model, ELCOM–CAEDYM, was extended to include buoyancy control dynamics for cyanobacteria, and validated in the stratified Daecheong Reservoir (Korea). Specifically, the model was used to explore the physical and biological processes that determined the temporal and spatial variability of Microcystis aeruginosa (hereafter Microcystis) biomass during an abnormally intense mono-specific bloom event. Inclusion of the buoyancy control function within the coupled model considerably improved the model predictability by capturing the biomass accumulation at the surface during the bloom, and the shift of the dominant group from green algae to cyanobacteria. Results indicated that physical processes, particularly inflow mixing, played a dominant role in determining the spatial heterogeneity of Microcystis biomass through the local control of nutrient availability. In addition, the shallow mixed layer depth (zm) relative to the euphotic depth (zp) under a stable thermal stratification provided a perfect physical habitat for the dominance of this cyanobacteria relative to other species, due to their buoyancy control capability. This work demonstrates that the coupled hydrodynamic and ecological modeling has advanced to a stage where it may be used to interpret field data and subject to a suitable level of validation, the model may be used as a management decision support tool.</description><subject>Animal, plant and microbial ecology</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>Buoyancy</subject><subject>Buoyancy control</subject><subject>Coupled physical–ecological model</subject><subject>Cyanobacteria</subject><subject>Daecheong reservoir</subject><subject>Ecology</subject><subject>ELCOM–CAEDYM</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Heterogeneity</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Microcystis</subject><subject>Microcystis aeruginosa</subject><subject>Spatial heterogeneity</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNUcFuEzEQtSqQCIVvYC9IXHY79m5s77GqgFZqxSV3y7HHjSNnnXo2lXLmx3FI1CucRjN-b57fPMa-cOg4cHmz7dDltMseUyeADx2oDjhcsQXXSrQKhHzHFtDD0PYa4AP7SLQFAC60WLDfqw02cQrpgJPDJodmvzlSdDY1dvLnJqf8_HeyL9khEVKTp2auRNrbOdaHDc5Y8jNOGOfjaYltnqKr6CPNkZp1ynlXVeqY5lIpIaJvChKW1xzLJ_Y-2ET4-VKv2erH99Xdffv46-fD3e1j65aDmlsUygdE5YUMoIVeK1cNKT6ADEs-Ku8lXwP0qF1QI-fWr7Ff2l5zOfZC99fs23lttfFyQJrNLpLDlOyE-UCGy0H0XPNx-R9QoUYJWvUVqs7QapeoYDD7Ene2HA0HcwrIbM1bQOYUkAFlakCV-fUiYqleNxQ7uUhvdKGlvvz79ozDepvXiMWQi6e0fCzoZuNz_KfWH38trMI</recordid><startdate>20141010</startdate><enddate>20141010</enddate><creator>Chung, S.W.</creator><creator>Imberger, J.</creator><creator>Hipsey, M.R.</creator><creator>Lee, H.S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20141010</creationdate><title>The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir</title><author>Chung, S.W. ; Imberger, J. ; Hipsey, M.R. ; Lee, H.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-e27dfee7d26f0828b7c38071406f5197dd61b003e8cf7911adbe35a381693283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>Buoyancy</topic><topic>Buoyancy control</topic><topic>Coupled physical–ecological model</topic><topic>Cyanobacteria</topic><topic>Daecheong reservoir</topic><topic>Ecology</topic><topic>ELCOM–CAEDYM</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Heterogeneity</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Microcystis</topic><topic>Microcystis aeruginosa</topic><topic>Spatial heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chung, S.W.</creatorcontrib><creatorcontrib>Imberger, J.</creatorcontrib><creatorcontrib>Hipsey, M.R.</creatorcontrib><creatorcontrib>Lee, H.S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chung, S.W.</au><au>Imberger, J.</au><au>Hipsey, M.R.</au><au>Lee, H.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir</atitle><jtitle>Ecological modelling</jtitle><date>2014-10-10</date><risdate>2014</risdate><volume>289</volume><spage>133</spage><epage>149</epage><pages>133-149</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>•We explore the physical and physiological processes of a Microcystis bloom event.•ELCOM–CAEDYM is extended to include buoyancy control dynamics for cyanobacteria.•Thermal stability, phosphorus availability, and buoyancy control are identified as key factors.•Inclusion of the buoyancy control considerably improves the model predictability.•Higher surface concentration occurs when buoyancy control is taken into account. A three-dimensional coupled hydrodynamic and ecological model, ELCOM–CAEDYM, was extended to include buoyancy control dynamics for cyanobacteria, and validated in the stratified Daecheong Reservoir (Korea). Specifically, the model was used to explore the physical and biological processes that determined the temporal and spatial variability of Microcystis aeruginosa (hereafter Microcystis) biomass during an abnormally intense mono-specific bloom event. Inclusion of the buoyancy control function within the coupled model considerably improved the model predictability by capturing the biomass accumulation at the surface during the bloom, and the shift of the dominant group from green algae to cyanobacteria. Results indicated that physical processes, particularly inflow mixing, played a dominant role in determining the spatial heterogeneity of Microcystis biomass through the local control of nutrient availability. In addition, the shallow mixed layer depth (zm) relative to the euphotic depth (zp) under a stable thermal stratification provided a perfect physical habitat for the dominance of this cyanobacteria relative to other species, due to their buoyancy control capability. This work demonstrates that the coupled hydrodynamic and ecological modeling has advanced to a stage where it may be used to interpret field data and subject to a suitable level of validation, the model may be used as a management decision support tool.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2014.07.010</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2014-10, Vol.289, p.133-149
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_1642318195
source Elsevier ScienceDirect Journals Complete
subjects Animal, plant and microbial ecology
Biological and medical sciences
Biomass
Buoyancy
Buoyancy control
Coupled physical–ecological model
Cyanobacteria
Daecheong reservoir
Ecology
ELCOM–CAEDYM
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Heterogeneity
Joining
Mathematical models
Methods and techniques (sampling, tagging, trapping, modelling...)
Microcystis
Microcystis aeruginosa
Spatial heterogeneity
title The influence of physical and physiological processes on the spatial heterogeneity of a Microcystis bloom in a stratified reservoir
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T07%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20influence%20of%20physical%20and%20physiological%20processes%20on%20the%20spatial%20heterogeneity%20of%20a%20Microcystis%20bloom%20in%20a%20stratified%20reservoir&rft.jtitle=Ecological%20modelling&rft.au=Chung,%20S.W.&rft.date=2014-10-10&rft.volume=289&rft.spage=133&rft.epage=149&rft.pages=133-149&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2014.07.010&rft_dat=%3Cproquest_cross%3E1642318195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627960873&rft_id=info:pmid/&rft_els_id=S0304380014003378&rfr_iscdi=true