Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes

Scientific literature shows a substantial study-to-study variation in the electrochemical lithiation performance of "1-D" nanomaterials such as Si and Ge nanowires or nanotubes. In this study we varied the vapor-liquid-solid (VLS) growth temperature and time, resulting in nanowire arrays w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-10, Vol.2 (39), p.16770-16785
Hauptverfasser: Farbod, Behdokht, Cui, Kai, Kupsta, Martin, Kalisvaart, WPeter, Memarzadeh, Elmira, Kohandehghan, Alireza, Zahiri, Beniamin, Mitlin, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16785
container_issue 39
container_start_page 16770
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 2
creator Farbod, Behdokht
Cui, Kai
Kupsta, Martin
Kalisvaart, WPeter
Memarzadeh, Elmira
Kohandehghan, Alireza
Zahiri, Beniamin
Mitlin, David
description Scientific literature shows a substantial study-to-study variation in the electrochemical lithiation performance of "1-D" nanomaterials such as Si and Ge nanowires or nanotubes. In this study we varied the vapor-liquid-solid (VLS) growth temperature and time, resulting in nanowire arrays with distinct mass loadings, mean diameters and lengths, and thicknesses of the parasitic Ge films that are formed at the base of the array during growth. When all the results were compared, a key empirical trend to emerge was that increasing active material mass loading drastically degraded the electrochemical performance. For instance, GeNWs grown for 2 minutes at 320 degree C (0.12 mg cm super(-2) mass loading, 34 nm mean nanowire diameter, 170 nm parasitic film thickness) had a reversible capacity of 1405 mA h g super(-1), a cycle 50 coulombic efficiency (CE) of 99.9%, a cycle 100 capacity retention of 98%, and delivered similar to 1200 mA h g super(-1) at 5 C. In contrast, electrodes grown for 10 minutes at 360 degree C (0.86 mg cm super(-2), 115 nm, 1410 nm) retained merely 5.6% of their initial capacity after 100 cycles, had a CE of 96%, and delivered similar to 400 mA h g super(-1) at 5 C. Using TOF-SIMS we are the first to demonstrate marked segregation of Li to the current collector interface in planar Ge films that are 300 and 500 nm thick, but not in the 150 nm specimens. FIB analysis shows that the cycled higher mass loaded electrodes develop more SEI and interfacial cracks near the current collector. A comparison with the state-of-the-art scientific literature for a range of Ge-based nanostructures shows that our low mass loaded GeNWs are highly favorable in terms of the reversible capacity at cycle 1 and cycle 100, steady-state cycling CE and high-rate capability.
doi_str_mv 10.1039/c4ta03805c
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642317400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1627964850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-7851590f1f05531b81af60d7741e1dc0924bceaefb682b5a9f94e813a67044c53</originalsourceid><addsrcrecordid>eNqNkEFLAzEUhIMoWGov_oIcRVh92SS7ybEUrULBSz3Kks2-2MjupiYp0n9va8Wzc5mB-ZjDEHLN4I4B1_dWZANcgbRnZFKChKIWujr_y0pdkllKH3CQAqi0npC3eYxmT98xDJjjnnbeZpMxUezR5hjsBgdvTU-3GF2Igxkt0uDoEuloxvDlI9Le543fDdSHkbYmZzzsHLoO0xW5cKZPOPv1KXl9fFgvnorVy_J5MV8VlnOVi1pJJjU45kBKzlrFjKugq2vBkHUWdClaiwZdW6mylUY7LVAxbqoahLCST8nNaXcbw-cOU24Gnyz2vRkx7FLDKlFyVguAf6BlrSuh5BG9PaE2hpQiumYb_WDivmHQHB9vFmI9_3l8wb8BCrJzfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627964850</pqid></control><display><type>article</type><title>Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Farbod, Behdokht ; Cui, Kai ; Kupsta, Martin ; Kalisvaart, WPeter ; Memarzadeh, Elmira ; Kohandehghan, Alireza ; Zahiri, Beniamin ; Mitlin, David</creator><creatorcontrib>Farbod, Behdokht ; Cui, Kai ; Kupsta, Martin ; Kalisvaart, WPeter ; Memarzadeh, Elmira ; Kohandehghan, Alireza ; Zahiri, Beniamin ; Mitlin, David</creatorcontrib><description>Scientific literature shows a substantial study-to-study variation in the electrochemical lithiation performance of "1-D" nanomaterials such as Si and Ge nanowires or nanotubes. In this study we varied the vapor-liquid-solid (VLS) growth temperature and time, resulting in nanowire arrays with distinct mass loadings, mean diameters and lengths, and thicknesses of the parasitic Ge films that are formed at the base of the array during growth. When all the results were compared, a key empirical trend to emerge was that increasing active material mass loading drastically degraded the electrochemical performance. For instance, GeNWs grown for 2 minutes at 320 degree C (0.12 mg cm super(-2) mass loading, 34 nm mean nanowire diameter, 170 nm parasitic film thickness) had a reversible capacity of 1405 mA h g super(-1), a cycle 50 coulombic efficiency (CE) of 99.9%, a cycle 100 capacity retention of 98%, and delivered similar to 1200 mA h g super(-1) at 5 C. In contrast, electrodes grown for 10 minutes at 360 degree C (0.86 mg cm super(-2), 115 nm, 1410 nm) retained merely 5.6% of their initial capacity after 100 cycles, had a CE of 96%, and delivered similar to 400 mA h g super(-1) at 5 C. Using TOF-SIMS we are the first to demonstrate marked segregation of Li to the current collector interface in planar Ge films that are 300 and 500 nm thick, but not in the 150 nm specimens. FIB analysis shows that the cycled higher mass loaded electrodes develop more SEI and interfacial cracks near the current collector. A comparison with the state-of-the-art scientific literature for a range of Ge-based nanostructures shows that our low mass loaded GeNWs are highly favorable in terms of the reversible capacity at cycle 1 and cycle 100, steady-state cycling CE and high-rate capability.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c4ta03805c</identifier><language>eng</language><subject>Accumulators ; Arrays ; Collectors ; Electrochemical analysis ; Electrodes ; Germanium ; Lithium-ion batteries ; Nanostructure ; Nanowires ; Sustainability</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2014-10, Vol.2 (39), p.16770-16785</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-7851590f1f05531b81af60d7741e1dc0924bceaefb682b5a9f94e813a67044c53</citedby><cites>FETCH-LOGICAL-c338t-7851590f1f05531b81af60d7741e1dc0924bceaefb682b5a9f94e813a67044c53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Farbod, Behdokht</creatorcontrib><creatorcontrib>Cui, Kai</creatorcontrib><creatorcontrib>Kupsta, Martin</creatorcontrib><creatorcontrib>Kalisvaart, WPeter</creatorcontrib><creatorcontrib>Memarzadeh, Elmira</creatorcontrib><creatorcontrib>Kohandehghan, Alireza</creatorcontrib><creatorcontrib>Zahiri, Beniamin</creatorcontrib><creatorcontrib>Mitlin, David</creatorcontrib><title>Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Scientific literature shows a substantial study-to-study variation in the electrochemical lithiation performance of "1-D" nanomaterials such as Si and Ge nanowires or nanotubes. In this study we varied the vapor-liquid-solid (VLS) growth temperature and time, resulting in nanowire arrays with distinct mass loadings, mean diameters and lengths, and thicknesses of the parasitic Ge films that are formed at the base of the array during growth. When all the results were compared, a key empirical trend to emerge was that increasing active material mass loading drastically degraded the electrochemical performance. For instance, GeNWs grown for 2 minutes at 320 degree C (0.12 mg cm super(-2) mass loading, 34 nm mean nanowire diameter, 170 nm parasitic film thickness) had a reversible capacity of 1405 mA h g super(-1), a cycle 50 coulombic efficiency (CE) of 99.9%, a cycle 100 capacity retention of 98%, and delivered similar to 1200 mA h g super(-1) at 5 C. In contrast, electrodes grown for 10 minutes at 360 degree C (0.86 mg cm super(-2), 115 nm, 1410 nm) retained merely 5.6% of their initial capacity after 100 cycles, had a CE of 96%, and delivered similar to 400 mA h g super(-1) at 5 C. Using TOF-SIMS we are the first to demonstrate marked segregation of Li to the current collector interface in planar Ge films that are 300 and 500 nm thick, but not in the 150 nm specimens. FIB analysis shows that the cycled higher mass loaded electrodes develop more SEI and interfacial cracks near the current collector. A comparison with the state-of-the-art scientific literature for a range of Ge-based nanostructures shows that our low mass loaded GeNWs are highly favorable in terms of the reversible capacity at cycle 1 and cycle 100, steady-state cycling CE and high-rate capability.</description><subject>Accumulators</subject><subject>Arrays</subject><subject>Collectors</subject><subject>Electrochemical analysis</subject><subject>Electrodes</subject><subject>Germanium</subject><subject>Lithium-ion batteries</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Sustainability</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLAzEUhIMoWGov_oIcRVh92SS7ybEUrULBSz3Kks2-2MjupiYp0n9va8Wzc5mB-ZjDEHLN4I4B1_dWZANcgbRnZFKChKIWujr_y0pdkllKH3CQAqi0npC3eYxmT98xDJjjnnbeZpMxUezR5hjsBgdvTU-3GF2Igxkt0uDoEuloxvDlI9Le543fDdSHkbYmZzzsHLoO0xW5cKZPOPv1KXl9fFgvnorVy_J5MV8VlnOVi1pJJjU45kBKzlrFjKugq2vBkHUWdClaiwZdW6mylUY7LVAxbqoahLCST8nNaXcbw-cOU24Gnyz2vRkx7FLDKlFyVguAf6BlrSuh5BG9PaE2hpQiumYb_WDivmHQHB9vFmI9_3l8wb8BCrJzfg</recordid><startdate>20141021</startdate><enddate>20141021</enddate><creator>Farbod, Behdokht</creator><creator>Cui, Kai</creator><creator>Kupsta, Martin</creator><creator>Kalisvaart, WPeter</creator><creator>Memarzadeh, Elmira</creator><creator>Kohandehghan, Alireza</creator><creator>Zahiri, Beniamin</creator><creator>Mitlin, David</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141021</creationdate><title>Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes</title><author>Farbod, Behdokht ; Cui, Kai ; Kupsta, Martin ; Kalisvaart, WPeter ; Memarzadeh, Elmira ; Kohandehghan, Alireza ; Zahiri, Beniamin ; Mitlin, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-7851590f1f05531b81af60d7741e1dc0924bceaefb682b5a9f94e813a67044c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Accumulators</topic><topic>Arrays</topic><topic>Collectors</topic><topic>Electrochemical analysis</topic><topic>Electrodes</topic><topic>Germanium</topic><topic>Lithium-ion batteries</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Sustainability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Farbod, Behdokht</creatorcontrib><creatorcontrib>Cui, Kai</creatorcontrib><creatorcontrib>Kupsta, Martin</creatorcontrib><creatorcontrib>Kalisvaart, WPeter</creatorcontrib><creatorcontrib>Memarzadeh, Elmira</creatorcontrib><creatorcontrib>Kohandehghan, Alireza</creatorcontrib><creatorcontrib>Zahiri, Beniamin</creatorcontrib><creatorcontrib>Mitlin, David</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Farbod, Behdokht</au><au>Cui, Kai</au><au>Kupsta, Martin</au><au>Kalisvaart, WPeter</au><au>Memarzadeh, Elmira</au><au>Kohandehghan, Alireza</au><au>Zahiri, Beniamin</au><au>Mitlin, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2014-10-21</date><risdate>2014</risdate><volume>2</volume><issue>39</issue><spage>16770</spage><epage>16785</epage><pages>16770-16785</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Scientific literature shows a substantial study-to-study variation in the electrochemical lithiation performance of "1-D" nanomaterials such as Si and Ge nanowires or nanotubes. In this study we varied the vapor-liquid-solid (VLS) growth temperature and time, resulting in nanowire arrays with distinct mass loadings, mean diameters and lengths, and thicknesses of the parasitic Ge films that are formed at the base of the array during growth. When all the results were compared, a key empirical trend to emerge was that increasing active material mass loading drastically degraded the electrochemical performance. For instance, GeNWs grown for 2 minutes at 320 degree C (0.12 mg cm super(-2) mass loading, 34 nm mean nanowire diameter, 170 nm parasitic film thickness) had a reversible capacity of 1405 mA h g super(-1), a cycle 50 coulombic efficiency (CE) of 99.9%, a cycle 100 capacity retention of 98%, and delivered similar to 1200 mA h g super(-1) at 5 C. In contrast, electrodes grown for 10 minutes at 360 degree C (0.86 mg cm super(-2), 115 nm, 1410 nm) retained merely 5.6% of their initial capacity after 100 cycles, had a CE of 96%, and delivered similar to 400 mA h g super(-1) at 5 C. Using TOF-SIMS we are the first to demonstrate marked segregation of Li to the current collector interface in planar Ge films that are 300 and 500 nm thick, but not in the 150 nm specimens. FIB analysis shows that the cycled higher mass loaded electrodes develop more SEI and interfacial cracks near the current collector. A comparison with the state-of-the-art scientific literature for a range of Ge-based nanostructures shows that our low mass loaded GeNWs are highly favorable in terms of the reversible capacity at cycle 1 and cycle 100, steady-state cycling CE and high-rate capability.</abstract><doi>10.1039/c4ta03805c</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2014-10, Vol.2 (39), p.16770-16785
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1642317400
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Accumulators
Arrays
Collectors
Electrochemical analysis
Electrodes
Germanium
Lithium-ion batteries
Nanostructure
Nanowires
Sustainability
title Array geometry dictates electrochemical performance of Ge nanowire lithium ion battery anodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T17%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Array%20geometry%20dictates%20electrochemical%20performance%20of%20Ge%20nanowire%20lithium%20ion%20battery%20anodes&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Farbod,%20Behdokht&rft.date=2014-10-21&rft.volume=2&rft.issue=39&rft.spage=16770&rft.epage=16785&rft.pages=16770-16785&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c4ta03805c&rft_dat=%3Cproquest_cross%3E1627964850%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627964850&rft_id=info:pmid/&rfr_iscdi=true