First-principles investigation of the electronic and lattice vibrational properties of Mg2C

[Display omitted] •The electronic band gap of Mg2C decreases slowly with pressure increasing.•There are two optical vibrational modes at the Γ point (F1u and F2g).•Their vibrational frequencies increase sharply with pressure increasing.•The optical modes at Γ point have large infrared intensity and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2014-10, Vol.93, p.234-238
Hauptverfasser: Li, Tongwei, Ju, Weiwei, Liu, Huihui, Cui, Hongling, Zhao, Xiaoyan, Yong, Yongliang, Feng, Zhenjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 238
container_issue
container_start_page 234
container_title Computational materials science
container_volume 93
creator Li, Tongwei
Ju, Weiwei
Liu, Huihui
Cui, Hongling
Zhao, Xiaoyan
Yong, Yongliang
Feng, Zhenjie
description [Display omitted] •The electronic band gap of Mg2C decreases slowly with pressure increasing.•There are two optical vibrational modes at the Γ point (F1u and F2g).•Their vibrational frequencies increase sharply with pressure increasing.•The optical modes at Γ point have large infrared intensity and Raman activity.•Large LO–TO splitting is found in the F1u mode of Mg2C. Mg2C, a newly synthesized magnesium carbide under high pressure, is a small band gap semiconductor. A first-principles investigation of the electronic and lattice dynamic properties of Mg2C are presented. We find the electronic band gap of Mg2C decreases slowly with pressure increasing. There are two optical vibrational modes at the Γ point of Mg2C. One is F1u mode, and the other is F2g mode. The former mode is infrared active and the latter one is Raman active. Their vibrational frequencies increase sharply with pressure increasing. Furthermore, we find that Mg2C has large infrared intensity and Raman activity, which indicates that infrared and Raman spectra may play a key role in identifying Mg2C. Moreover, we calculate the dielectric tensor and LO–TO splitting under different pressure and find large LO–TO splitting in the F1u mode of Mg2C. Our calculated results provide extraordinary insights into the infrared and Raman spectra of Mg2C.
doi_str_mv 10.1016/j.commatsci.2014.06.048
format Article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642317302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025614004595</els_id><sourcerecordid>1642317302</sourcerecordid><originalsourceid>FETCH-LOGICAL-e309t-ed546f8594a2687f9fb05db5675d1c5ed5c1f77ab4eb24bcb71aaadd6734e8663</originalsourceid><addsrcrecordid>eNo9kT1PwzAQhi0EEqXwG_CCxJJgO47tjFVFAamIBSYGy3EuxVW-sN1K_HtcWjHdcM-d3g-EbinJKaHiYZvbse9NDNbljFCeE5ETrs7QjCpZZUQReo5mpGIyI6wUl-gqhC1Jl5ViM_S5cj7EbPJusG7qIGA37CFEtzHRjQMeWxy_AEMHNvpxcBabocGdidFZwHtX-z_OdHjy4wQ-uvQiHb1u2PIaXbSmC3BzmnP0sXp8Xz5n67enl-VinUFBqphBU3LRqrLihgkl26qtSdnUpZBlQ22Z1pa2UpqaQ814bWtJjTFNI2TBQQlRzNH98W-S8L1L4nXvgoWuMwOMu6Cp4KygsiAsoXcn1ARrutabZDvoZL83_kczJSkR1YFbHDlIuvcOvE7xwmChcT4loZvRaUr0oQC91f8F6EMBmgidCih-AW6Xfwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642317302</pqid></control><display><type>article</type><title>First-principles investigation of the electronic and lattice vibrational properties of Mg2C</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Tongwei ; Ju, Weiwei ; Liu, Huihui ; Cui, Hongling ; Zhao, Xiaoyan ; Yong, Yongliang ; Feng, Zhenjie</creator><creatorcontrib>Li, Tongwei ; Ju, Weiwei ; Liu, Huihui ; Cui, Hongling ; Zhao, Xiaoyan ; Yong, Yongliang ; Feng, Zhenjie</creatorcontrib><description>[Display omitted] •The electronic band gap of Mg2C decreases slowly with pressure increasing.•There are two optical vibrational modes at the Γ point (F1u and F2g).•Their vibrational frequencies increase sharply with pressure increasing.•The optical modes at Γ point have large infrared intensity and Raman activity.•Large LO–TO splitting is found in the F1u mode of Mg2C. Mg2C, a newly synthesized magnesium carbide under high pressure, is a small band gap semiconductor. A first-principles investigation of the electronic and lattice dynamic properties of Mg2C are presented. We find the electronic band gap of Mg2C decreases slowly with pressure increasing. There are two optical vibrational modes at the Γ point of Mg2C. One is F1u mode, and the other is F2g mode. The former mode is infrared active and the latter one is Raman active. Their vibrational frequencies increase sharply with pressure increasing. Furthermore, we find that Mg2C has large infrared intensity and Raman activity, which indicates that infrared and Raman spectra may play a key role in identifying Mg2C. Moreover, we calculate the dielectric tensor and LO–TO splitting under different pressure and find large LO–TO splitting in the F1u mode of Mg2C. Our calculated results provide extraordinary insights into the infrared and Raman spectra of Mg2C.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2014.06.048</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Carbides ; Condensed matter: structure, mechanical and thermal properties ; Density-functional calculation ; Electronics ; Exact sciences and technology ; High-pressure and shock-wave effects in solids and liquids ; Infrared ; Infrared and Raman spectra ; Lattice dynamics ; Lattice vibration ; Lattices ; Magnesium ; Mathematical analysis ; Mechanical and acoustical properties of condensed matter ; Phonon states and bands, normal modes, and phonon dispersion ; Phonons and vibrations in crystal lattices ; Physics ; Semiconductors ; Splitting</subject><ispartof>Computational materials science, 2014-10, Vol.93, p.234-238</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0927025614004595$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28710692$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Tongwei</creatorcontrib><creatorcontrib>Ju, Weiwei</creatorcontrib><creatorcontrib>Liu, Huihui</creatorcontrib><creatorcontrib>Cui, Hongling</creatorcontrib><creatorcontrib>Zhao, Xiaoyan</creatorcontrib><creatorcontrib>Yong, Yongliang</creatorcontrib><creatorcontrib>Feng, Zhenjie</creatorcontrib><title>First-principles investigation of the electronic and lattice vibrational properties of Mg2C</title><title>Computational materials science</title><description>[Display omitted] •The electronic band gap of Mg2C decreases slowly with pressure increasing.•There are two optical vibrational modes at the Γ point (F1u and F2g).•Their vibrational frequencies increase sharply with pressure increasing.•The optical modes at Γ point have large infrared intensity and Raman activity.•Large LO–TO splitting is found in the F1u mode of Mg2C. Mg2C, a newly synthesized magnesium carbide under high pressure, is a small band gap semiconductor. A first-principles investigation of the electronic and lattice dynamic properties of Mg2C are presented. We find the electronic band gap of Mg2C decreases slowly with pressure increasing. There are two optical vibrational modes at the Γ point of Mg2C. One is F1u mode, and the other is F2g mode. The former mode is infrared active and the latter one is Raman active. Their vibrational frequencies increase sharply with pressure increasing. Furthermore, we find that Mg2C has large infrared intensity and Raman activity, which indicates that infrared and Raman spectra may play a key role in identifying Mg2C. Moreover, we calculate the dielectric tensor and LO–TO splitting under different pressure and find large LO–TO splitting in the F1u mode of Mg2C. Our calculated results provide extraordinary insights into the infrared and Raman spectra of Mg2C.</description><subject>Carbides</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Density-functional calculation</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>High-pressure and shock-wave effects in solids and liquids</subject><subject>Infrared</subject><subject>Infrared and Raman spectra</subject><subject>Lattice dynamics</subject><subject>Lattice vibration</subject><subject>Lattices</subject><subject>Magnesium</subject><subject>Mathematical analysis</subject><subject>Mechanical and acoustical properties of condensed matter</subject><subject>Phonon states and bands, normal modes, and phonon dispersion</subject><subject>Phonons and vibrations in crystal lattices</subject><subject>Physics</subject><subject>Semiconductors</subject><subject>Splitting</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo9kT1PwzAQhi0EEqXwG_CCxJJgO47tjFVFAamIBSYGy3EuxVW-sN1K_HtcWjHdcM-d3g-EbinJKaHiYZvbse9NDNbljFCeE5ETrs7QjCpZZUQReo5mpGIyI6wUl-gqhC1Jl5ViM_S5cj7EbPJusG7qIGA37CFEtzHRjQMeWxy_AEMHNvpxcBabocGdidFZwHtX-z_OdHjy4wQ-uvQiHb1u2PIaXbSmC3BzmnP0sXp8Xz5n67enl-VinUFBqphBU3LRqrLihgkl26qtSdnUpZBlQ22Z1pa2UpqaQ814bWtJjTFNI2TBQQlRzNH98W-S8L1L4nXvgoWuMwOMu6Cp4KygsiAsoXcn1ARrutabZDvoZL83_kczJSkR1YFbHDlIuvcOvE7xwmChcT4loZvRaUr0oQC91f8F6EMBmgidCih-AW6Xfwg</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Li, Tongwei</creator><creator>Ju, Weiwei</creator><creator>Liu, Huihui</creator><creator>Cui, Hongling</creator><creator>Zhao, Xiaoyan</creator><creator>Yong, Yongliang</creator><creator>Feng, Zhenjie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>7SC</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>First-principles investigation of the electronic and lattice vibrational properties of Mg2C</title><author>Li, Tongwei ; Ju, Weiwei ; Liu, Huihui ; Cui, Hongling ; Zhao, Xiaoyan ; Yong, Yongliang ; Feng, Zhenjie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e309t-ed546f8594a2687f9fb05db5675d1c5ed5c1f77ab4eb24bcb71aaadd6734e8663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Carbides</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Density-functional calculation</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>High-pressure and shock-wave effects in solids and liquids</topic><topic>Infrared</topic><topic>Infrared and Raman spectra</topic><topic>Lattice dynamics</topic><topic>Lattice vibration</topic><topic>Lattices</topic><topic>Magnesium</topic><topic>Mathematical analysis</topic><topic>Mechanical and acoustical properties of condensed matter</topic><topic>Phonon states and bands, normal modes, and phonon dispersion</topic><topic>Phonons and vibrations in crystal lattices</topic><topic>Physics</topic><topic>Semiconductors</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Tongwei</creatorcontrib><creatorcontrib>Ju, Weiwei</creatorcontrib><creatorcontrib>Liu, Huihui</creatorcontrib><creatorcontrib>Cui, Hongling</creatorcontrib><creatorcontrib>Zhao, Xiaoyan</creatorcontrib><creatorcontrib>Yong, Yongliang</creatorcontrib><creatorcontrib>Feng, Zhenjie</creatorcontrib><collection>Pascal-Francis</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Tongwei</au><au>Ju, Weiwei</au><au>Liu, Huihui</au><au>Cui, Hongling</au><au>Zhao, Xiaoyan</au><au>Yong, Yongliang</au><au>Feng, Zhenjie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>First-principles investigation of the electronic and lattice vibrational properties of Mg2C</atitle><jtitle>Computational materials science</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>93</volume><spage>234</spage><epage>238</epage><pages>234-238</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] •The electronic band gap of Mg2C decreases slowly with pressure increasing.•There are two optical vibrational modes at the Γ point (F1u and F2g).•Their vibrational frequencies increase sharply with pressure increasing.•The optical modes at Γ point have large infrared intensity and Raman activity.•Large LO–TO splitting is found in the F1u mode of Mg2C. Mg2C, a newly synthesized magnesium carbide under high pressure, is a small band gap semiconductor. A first-principles investigation of the electronic and lattice dynamic properties of Mg2C are presented. We find the electronic band gap of Mg2C decreases slowly with pressure increasing. There are two optical vibrational modes at the Γ point of Mg2C. One is F1u mode, and the other is F2g mode. The former mode is infrared active and the latter one is Raman active. Their vibrational frequencies increase sharply with pressure increasing. Furthermore, we find that Mg2C has large infrared intensity and Raman activity, which indicates that infrared and Raman spectra may play a key role in identifying Mg2C. Moreover, we calculate the dielectric tensor and LO–TO splitting under different pressure and find large LO–TO splitting in the F1u mode of Mg2C. Our calculated results provide extraordinary insights into the infrared and Raman spectra of Mg2C.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2014.06.048</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2014-10, Vol.93, p.234-238
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1642317302
source Elsevier ScienceDirect Journals
subjects Carbides
Condensed matter: structure, mechanical and thermal properties
Density-functional calculation
Electronics
Exact sciences and technology
High-pressure and shock-wave effects in solids and liquids
Infrared
Infrared and Raman spectra
Lattice dynamics
Lattice vibration
Lattices
Magnesium
Mathematical analysis
Mechanical and acoustical properties of condensed matter
Phonon states and bands, normal modes, and phonon dispersion
Phonons and vibrations in crystal lattices
Physics
Semiconductors
Splitting
title First-principles investigation of the electronic and lattice vibrational properties of Mg2C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=First-principles%20investigation%20of%20the%20electronic%20and%20lattice%20vibrational%20properties%20of%20Mg2C&rft.jtitle=Computational%20materials%20science&rft.au=Li,%20Tongwei&rft.date=2014-10-01&rft.volume=93&rft.spage=234&rft.epage=238&rft.pages=234-238&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2014.06.048&rft_dat=%3Cproquest_pasca%3E1642317302%3C/proquest_pasca%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642317302&rft_id=info:pmid/&rft_els_id=S0927025614004595&rfr_iscdi=true