Conductive CNT-PVDF membrane for capacitive organic fouling reduction

Organic fouling of ultrafiltration (UF) membranes results in decreased water flux and increased energy requirements. Modification of UF membrane surfaces is one possible method to mitigate natural organic matter (NOM) fouling, yet to date; most modifications have been passive. In this study, we inve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2014-06, Vol.459, p.143-156
Hauptverfasser: Zhang, Qiaoying, Vecitis, Chad D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 156
container_issue
container_start_page 143
container_title Journal of membrane science
container_volume 459
creator Zhang, Qiaoying
Vecitis, Chad D.
description Organic fouling of ultrafiltration (UF) membranes results in decreased water flux and increased energy requirements. Modification of UF membrane surfaces is one possible method to mitigate natural organic matter (NOM) fouling, yet to date; most modifications have been passive. In this study, we investigate the use of a carbon nanotube-polyvinylidene fluoride (CNT-PVDF) porous non-Faradaic cathode on top of a UF membrane to actively produce negative surface charges via capacitive charging. The study is divided into three elements: (1) modification of the UF system with the capacitive CNT-PVDF electrodes and determination of the optimal electrode-membrane configuration, (2) analysis of the fouling mitigation mechanism, and (3) evaluation of the practical potential of capacitive fouling reduction. All experiments were completed in the cross-flow configuration. The optimal electrode-membrane configuration for organic fouling reduction was when the permeate first flowed through the porous anode, then the CNT-PVDF cathode, and finally the polyethersulfone (PES) UF membrane. The extent of capacitive fouling reduction was determined to be a function of anode material, ionic strength, and cathode potential. The primary fouling reduction mechanism is the potential-induced cathodic negative surface charges that increase the Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier and decrease the collision efficiency of negatively-charged organic matter with the membrane surface. The capacitive system has potential to reduce energy requirements by up to 2-fold as compared to the unmodified UF system when challenged with 10ppm NOM solutions at low ionic strength. [Display omitted] •Porous CNT-PVDF non-Faradaic cathode capacitively reduced UF organic fouling.•Electrode-membrane order affected hydrodynamic and electrokinetic fouling reduction.•Capacitive organic fouling reduction is related to increase in DLVO barrier energy.•At low ionic strength, O&M savings greater than material cost increase.
doi_str_mv 10.1016/j.memsci.2014.02.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642315502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738814001318</els_id><sourcerecordid>1642315502</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-80b4ae5769480394fc0e04b1d3e72888c6193b6c30561d32742eaa81caee7a9c3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFb_gYdcBC-Jsx9Jdi-CVKuCqAf1umynk7IlTepuW_Dfu7XFo54Ghud9Z3gYO-dQcODV1bxY0CKiLwRwVYAogNcHbMB1LXPJhTxkA5B1lddS62N2EuMcEgHaDNjdqO-ma1z5DWWj57f89eN2nKW2SXAdZU0fMnRLh_4H6MPMdR7Tet36bpYF-on23Sk7alwb6Ww_h-x9fPc2esifXu4fRzdPOSppVrmGiXJU1pVRGqRRDQKBmvCppFporbHiRk4qlFBWaSlqJcg5zdER1c6gHLLLXe8y9J9riiu78BGpbdOz_TpaXikheVmC-B8thVJQcr5F1Q7F0McYqLHL4BcufFkOdivYzu1OsN0KtiBs0pdiF_sLLqJrm2QMffzNCi2NMKVJ3PWOo2Rm4ynY1EQd0tQHwpWd9v7vQ995npEz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524405112</pqid></control><display><type>article</type><title>Conductive CNT-PVDF membrane for capacitive organic fouling reduction</title><source>Elsevier ScienceDirect Journals</source><creator>Zhang, Qiaoying ; Vecitis, Chad D.</creator><creatorcontrib>Zhang, Qiaoying ; Vecitis, Chad D.</creatorcontrib><description>Organic fouling of ultrafiltration (UF) membranes results in decreased water flux and increased energy requirements. Modification of UF membrane surfaces is one possible method to mitigate natural organic matter (NOM) fouling, yet to date; most modifications have been passive. In this study, we investigate the use of a carbon nanotube-polyvinylidene fluoride (CNT-PVDF) porous non-Faradaic cathode on top of a UF membrane to actively produce negative surface charges via capacitive charging. The study is divided into three elements: (1) modification of the UF system with the capacitive CNT-PVDF electrodes and determination of the optimal electrode-membrane configuration, (2) analysis of the fouling mitigation mechanism, and (3) evaluation of the practical potential of capacitive fouling reduction. All experiments were completed in the cross-flow configuration. The optimal electrode-membrane configuration for organic fouling reduction was when the permeate first flowed through the porous anode, then the CNT-PVDF cathode, and finally the polyethersulfone (PES) UF membrane. The extent of capacitive fouling reduction was determined to be a function of anode material, ionic strength, and cathode potential. The primary fouling reduction mechanism is the potential-induced cathodic negative surface charges that increase the Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier and decrease the collision efficiency of negatively-charged organic matter with the membrane surface. The capacitive system has potential to reduce energy requirements by up to 2-fold as compared to the unmodified UF system when challenged with 10ppm NOM solutions at low ionic strength. [Display omitted] •Porous CNT-PVDF non-Faradaic cathode capacitively reduced UF organic fouling.•Electrode-membrane order affected hydrodynamic and electrokinetic fouling reduction.•Capacitive organic fouling reduction is related to increase in DLVO barrier energy.•At low ionic strength, O&amp;M savings greater than material cost increase.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2014.02.017</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Anodes ; Capacitive fouling mitigation ; Cathodes ; Chemistry ; Colloidal state and disperse state ; Energy requirements ; Exact sciences and technology ; Fouling ; General and physical chemistry ; Membranes ; Organic fouling ; Reduction ; Strength ; Surface charge ; Surface chemistry ; Ultrafiltration membrane</subject><ispartof>Journal of membrane science, 2014-06, Vol.459, p.143-156</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-80b4ae5769480394fc0e04b1d3e72888c6193b6c30561d32742eaa81caee7a9c3</citedby><cites>FETCH-LOGICAL-c439t-80b4ae5769480394fc0e04b1d3e72888c6193b6c30561d32742eaa81caee7a9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0376738814001318$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28392959$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Qiaoying</creatorcontrib><creatorcontrib>Vecitis, Chad D.</creatorcontrib><title>Conductive CNT-PVDF membrane for capacitive organic fouling reduction</title><title>Journal of membrane science</title><description>Organic fouling of ultrafiltration (UF) membranes results in decreased water flux and increased energy requirements. Modification of UF membrane surfaces is one possible method to mitigate natural organic matter (NOM) fouling, yet to date; most modifications have been passive. In this study, we investigate the use of a carbon nanotube-polyvinylidene fluoride (CNT-PVDF) porous non-Faradaic cathode on top of a UF membrane to actively produce negative surface charges via capacitive charging. The study is divided into three elements: (1) modification of the UF system with the capacitive CNT-PVDF electrodes and determination of the optimal electrode-membrane configuration, (2) analysis of the fouling mitigation mechanism, and (3) evaluation of the practical potential of capacitive fouling reduction. All experiments were completed in the cross-flow configuration. The optimal electrode-membrane configuration for organic fouling reduction was when the permeate first flowed through the porous anode, then the CNT-PVDF cathode, and finally the polyethersulfone (PES) UF membrane. The extent of capacitive fouling reduction was determined to be a function of anode material, ionic strength, and cathode potential. The primary fouling reduction mechanism is the potential-induced cathodic negative surface charges that increase the Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier and decrease the collision efficiency of negatively-charged organic matter with the membrane surface. The capacitive system has potential to reduce energy requirements by up to 2-fold as compared to the unmodified UF system when challenged with 10ppm NOM solutions at low ionic strength. [Display omitted] •Porous CNT-PVDF non-Faradaic cathode capacitively reduced UF organic fouling.•Electrode-membrane order affected hydrodynamic and electrokinetic fouling reduction.•Capacitive organic fouling reduction is related to increase in DLVO barrier energy.•At low ionic strength, O&amp;M savings greater than material cost increase.</description><subject>Anodes</subject><subject>Capacitive fouling mitigation</subject><subject>Cathodes</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Energy requirements</subject><subject>Exact sciences and technology</subject><subject>Fouling</subject><subject>General and physical chemistry</subject><subject>Membranes</subject><subject>Organic fouling</subject><subject>Reduction</subject><subject>Strength</subject><subject>Surface charge</subject><subject>Surface chemistry</subject><subject>Ultrafiltration membrane</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFb_gYdcBC-Jsx9Jdi-CVKuCqAf1umynk7IlTepuW_Dfu7XFo54Ghud9Z3gYO-dQcODV1bxY0CKiLwRwVYAogNcHbMB1LXPJhTxkA5B1lddS62N2EuMcEgHaDNjdqO-ma1z5DWWj57f89eN2nKW2SXAdZU0fMnRLh_4H6MPMdR7Tet36bpYF-on23Sk7alwb6Ww_h-x9fPc2esifXu4fRzdPOSppVrmGiXJU1pVRGqRRDQKBmvCppFporbHiRk4qlFBWaSlqJcg5zdER1c6gHLLLXe8y9J9riiu78BGpbdOz_TpaXikheVmC-B8thVJQcr5F1Q7F0McYqLHL4BcufFkOdivYzu1OsN0KtiBs0pdiF_sLLqJrm2QMffzNCi2NMKVJ3PWOo2Rm4ynY1EQd0tQHwpWd9v7vQ995npEz</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Zhang, Qiaoying</creator><creator>Vecitis, Chad D.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7SR</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope></search><sort><creationdate>20140601</creationdate><title>Conductive CNT-PVDF membrane for capacitive organic fouling reduction</title><author>Zhang, Qiaoying ; Vecitis, Chad D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-80b4ae5769480394fc0e04b1d3e72888c6193b6c30561d32742eaa81caee7a9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Capacitive fouling mitigation</topic><topic>Cathodes</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Energy requirements</topic><topic>Exact sciences and technology</topic><topic>Fouling</topic><topic>General and physical chemistry</topic><topic>Membranes</topic><topic>Organic fouling</topic><topic>Reduction</topic><topic>Strength</topic><topic>Surface charge</topic><topic>Surface chemistry</topic><topic>Ultrafiltration membrane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Qiaoying</creatorcontrib><creatorcontrib>Vecitis, Chad D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Qiaoying</au><au>Vecitis, Chad D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conductive CNT-PVDF membrane for capacitive organic fouling reduction</atitle><jtitle>Journal of membrane science</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>459</volume><spage>143</spage><epage>156</epage><pages>143-156</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>Organic fouling of ultrafiltration (UF) membranes results in decreased water flux and increased energy requirements. Modification of UF membrane surfaces is one possible method to mitigate natural organic matter (NOM) fouling, yet to date; most modifications have been passive. In this study, we investigate the use of a carbon nanotube-polyvinylidene fluoride (CNT-PVDF) porous non-Faradaic cathode on top of a UF membrane to actively produce negative surface charges via capacitive charging. The study is divided into three elements: (1) modification of the UF system with the capacitive CNT-PVDF electrodes and determination of the optimal electrode-membrane configuration, (2) analysis of the fouling mitigation mechanism, and (3) evaluation of the practical potential of capacitive fouling reduction. All experiments were completed in the cross-flow configuration. The optimal electrode-membrane configuration for organic fouling reduction was when the permeate first flowed through the porous anode, then the CNT-PVDF cathode, and finally the polyethersulfone (PES) UF membrane. The extent of capacitive fouling reduction was determined to be a function of anode material, ionic strength, and cathode potential. The primary fouling reduction mechanism is the potential-induced cathodic negative surface charges that increase the Derjaguin–Landau–Verwey–Overbeek (DLVO) energy barrier and decrease the collision efficiency of negatively-charged organic matter with the membrane surface. The capacitive system has potential to reduce energy requirements by up to 2-fold as compared to the unmodified UF system when challenged with 10ppm NOM solutions at low ionic strength. [Display omitted] •Porous CNT-PVDF non-Faradaic cathode capacitively reduced UF organic fouling.•Electrode-membrane order affected hydrodynamic and electrokinetic fouling reduction.•Capacitive organic fouling reduction is related to increase in DLVO barrier energy.•At low ionic strength, O&amp;M savings greater than material cost increase.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2014.02.017</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2014-06, Vol.459, p.143-156
issn 0376-7388
1873-3123
language eng
recordid cdi_proquest_miscellaneous_1642315502
source Elsevier ScienceDirect Journals
subjects Anodes
Capacitive fouling mitigation
Cathodes
Chemistry
Colloidal state and disperse state
Energy requirements
Exact sciences and technology
Fouling
General and physical chemistry
Membranes
Organic fouling
Reduction
Strength
Surface charge
Surface chemistry
Ultrafiltration membrane
title Conductive CNT-PVDF membrane for capacitive organic fouling reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T03%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conductive%20CNT-PVDF%20membrane%20for%20capacitive%20organic%20fouling%20reduction&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Zhang,%20Qiaoying&rft.date=2014-06-01&rft.volume=459&rft.spage=143&rft.epage=156&rft.pages=143-156&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2014.02.017&rft_dat=%3Cproquest_cross%3E1642315502%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524405112&rft_id=info:pmid/&rft_els_id=S0376738814001318&rfr_iscdi=true