Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems
We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maint...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2014-12, Vol.269, p.440-450 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 450 |
---|---|
container_issue | |
container_start_page | 440 |
container_title | Journal of power sources |
container_volume | 269 |
creator | YIOTIS, Andreas G KAINOURGIAKIS, Michael E KOSMIDIS, Lefteris I CHARALAMBOPOULOU, Georgia C STUBOS, Athanassios K |
description | We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H sub(2) desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H sub(2) desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH sub(2) as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H sub(2) saturation profiles vs operation time. |
doi_str_mv | 10.1016/j.jpowsour.2014.07.023 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642314586</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622612118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-f567a84f60246df7be9f65e17f1f677422a4679b6cca897782cbba8fec5e20f73</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhi1EJULLX0C-IHHZxfbu2g43FNEPqVIPlLPl-CNx2LUXj1chP4N_jNMWzpxmNH7mHVkPQu8paSmh_NOhPczpCGnJLSO0b4loCeteoRWVomuYGIbXaEU6IRshhu4NegtwIIRQKsgK_X7cuzzpEZu0zGOIOzyn4mIJdZQ8_pbGYPHDr2Advl7ciDduHAEfQ9njyZUK7U82n1-Ljj_gM36KS_YU9RQM1tFi6yDsYs2PULmsS6gdLumoswUcYnG7OnQWwwmKm-AKXXg9gnv3Ui_R9-uvj5vb5v7h5m7z5b4xnZSl8QMXWvaeE9Zz68XWrT0fHBWeei5Ez5juuVhvuTFaroWQzGy3WnpnBseIF90l-vicO-f0c3FQ1BTA1O_p6NICivKedbQfJP8PlDFOGaWyovwZNTkBZOfVnMOk80lRos661EH91aXOuhQRquqqix9ebmgwevRZRxPg3zarLhnv--4PVV6cbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622612118</pqid></control><display><type>article</type><title>Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems</title><source>Elsevier ScienceDirect Journals</source><creator>YIOTIS, Andreas G ; KAINOURGIAKIS, Michael E ; KOSMIDIS, Lefteris I ; CHARALAMBOPOULOU, Georgia C ; STUBOS, Athanassios K</creator><creatorcontrib>YIOTIS, Andreas G ; KAINOURGIAKIS, Michael E ; KOSMIDIS, Lefteris I ; CHARALAMBOPOULOU, Georgia C ; STUBOS, Athanassios K</creatorcontrib><description>We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H sub(2) desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H sub(2) desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH sub(2) as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H sub(2) saturation profiles vs operation time.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2014.07.023</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier</publisher><subject>Applied sciences ; Design engineering ; Desorption ; Direct energy conversion and energy accumulation ; Dynamical systems ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; Fuel tanks ; Mathematical models ; Solid oxide fuel cells ; Tanks ; Thermoelectricity</subject><ispartof>Journal of power sources, 2014-12, Vol.269, p.440-450</ispartof><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-f567a84f60246df7be9f65e17f1f677422a4679b6cca897782cbba8fec5e20f73</citedby><cites>FETCH-LOGICAL-c388t-f567a84f60246df7be9f65e17f1f677422a4679b6cca897782cbba8fec5e20f73</cites><orcidid>0000-0001-8204-3036</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28732644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>YIOTIS, Andreas G</creatorcontrib><creatorcontrib>KAINOURGIAKIS, Michael E</creatorcontrib><creatorcontrib>KOSMIDIS, Lefteris I</creatorcontrib><creatorcontrib>CHARALAMBOPOULOU, Georgia C</creatorcontrib><creatorcontrib>STUBOS, Athanassios K</creatorcontrib><title>Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems</title><title>Journal of power sources</title><description>We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H sub(2) desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H sub(2) desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH sub(2) as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H sub(2) saturation profiles vs operation time.</description><subject>Applied sciences</subject><subject>Design engineering</subject><subject>Desorption</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Dynamical systems</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>Fuel tanks</subject><subject>Mathematical models</subject><subject>Solid oxide fuel cells</subject><subject>Tanks</subject><subject>Thermoelectricity</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1vEzEQhi1EJULLX0C-IHHZxfbu2g43FNEPqVIPlLPl-CNx2LUXj1chP4N_jNMWzpxmNH7mHVkPQu8paSmh_NOhPczpCGnJLSO0b4loCeteoRWVomuYGIbXaEU6IRshhu4NegtwIIRQKsgK_X7cuzzpEZu0zGOIOzyn4mIJdZQ8_pbGYPHDr2Advl7ciDduHAEfQ9njyZUK7U82n1-Ljj_gM36KS_YU9RQM1tFi6yDsYs2PULmsS6gdLumoswUcYnG7OnQWwwmKm-AKXXg9gnv3Ui_R9-uvj5vb5v7h5m7z5b4xnZSl8QMXWvaeE9Zz68XWrT0fHBWeei5Ez5juuVhvuTFaroWQzGy3WnpnBseIF90l-vicO-f0c3FQ1BTA1O_p6NICivKedbQfJP8PlDFOGaWyovwZNTkBZOfVnMOk80lRos661EH91aXOuhQRquqqix9ebmgwevRZRxPg3zarLhnv--4PVV6cbA</recordid><startdate>20141210</startdate><enddate>20141210</enddate><creator>YIOTIS, Andreas G</creator><creator>KAINOURGIAKIS, Michael E</creator><creator>KOSMIDIS, Lefteris I</creator><creator>CHARALAMBOPOULOU, Georgia C</creator><creator>STUBOS, Athanassios K</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8204-3036</orcidid></search><sort><creationdate>20141210</creationdate><title>Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems</title><author>YIOTIS, Andreas G ; KAINOURGIAKIS, Michael E ; KOSMIDIS, Lefteris I ; CHARALAMBOPOULOU, Georgia C ; STUBOS, Athanassios K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-f567a84f60246df7be9f65e17f1f677422a4679b6cca897782cbba8fec5e20f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Design engineering</topic><topic>Desorption</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Dynamical systems</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>Fuel tanks</topic><topic>Mathematical models</topic><topic>Solid oxide fuel cells</topic><topic>Tanks</topic><topic>Thermoelectricity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>YIOTIS, Andreas G</creatorcontrib><creatorcontrib>KAINOURGIAKIS, Michael E</creatorcontrib><creatorcontrib>KOSMIDIS, Lefteris I</creatorcontrib><creatorcontrib>CHARALAMBOPOULOU, Georgia C</creatorcontrib><creatorcontrib>STUBOS, Athanassios K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>YIOTIS, Andreas G</au><au>KAINOURGIAKIS, Michael E</au><au>KOSMIDIS, Lefteris I</au><au>CHARALAMBOPOULOU, Georgia C</au><au>STUBOS, Athanassios K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems</atitle><jtitle>Journal of power sources</jtitle><date>2014-12-10</date><risdate>2014</risdate><volume>269</volume><spage>440</spage><epage>450</epage><pages>440-450</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>We study the thermal coupling potential between a high temperature metal hydride (MH) tank and a Solid Oxide Fuel Cell (SOFC) aiming towards the design of an efficient integrated system, where the thermal power produced during normal SOFC operation is redirected towards the MH tank in order to maintain H sub(2) desorption without the use of external heating sources. Based on principles of thermodynamics, we calculate the energy balance in the SOFC/MH system and derive analytical expressions for both the thermal power produced during SOFC operation and the corresponding thermal power required for H sub(2) desorption, as a function of the operating temperature, efficiency and fuel utilization ratio in the SOFC, and the MH enthalpy of desorption in the tank. Based on these calculations, we propose an integrated SOFC/MH design where heat is transferred primarily by radiation to the tank in order to maintain steady-state desorption conditions. We develop a mathematical model for this particular design that accounts for heat/mass transfer and desorption kinetics in the tank, and solve for the dynamics of the system assuming MgH sub(2) as a storage material. Our results focus primarily on tank operating conditions, such as pressure, temperature and H sub(2) saturation profiles vs operation time.</abstract><cop>Amsterdam</cop><pub>Elsevier</pub><doi>10.1016/j.jpowsour.2014.07.023</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8204-3036</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7753 |
ispartof | Journal of power sources, 2014-12, Vol.269, p.440-450 |
issn | 0378-7753 1873-2755 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642314586 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Design engineering Desorption Direct energy conversion and energy accumulation Dynamical systems Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells Fuel tanks Mathematical models Solid oxide fuel cells Tanks Thermoelectricity |
title | Thermal coupling potential of Solid Oxide Fuel Cells with metal hydride tanks: Thermodynamic and design considerations towards integrated systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T22%3A48%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20coupling%20potential%20of%20Solid%20Oxide%20Fuel%20Cells%20with%20metal%20hydride%20tanks:%20Thermodynamic%20and%20design%20considerations%20towards%20integrated%20systems&rft.jtitle=Journal%20of%20power%20sources&rft.au=YIOTIS,%20Andreas%20G&rft.date=2014-12-10&rft.volume=269&rft.spage=440&rft.epage=450&rft.pages=440-450&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2014.07.023&rft_dat=%3Cproquest_cross%3E1622612118%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622612118&rft_id=info:pmid/&rfr_iscdi=true |