Modelling of arsenic retention in constructed wetlands
•As retention processes in constructed wetlands were implemented in RCB-ARSENIC.•As precipitation and sorption, and root oxygen release were included.•Data from two planted prototypes were used to test the model.•The simulated data closely matched the data measured in all evaluated cases.•The RCB-AR...
Gespeichert in:
Veröffentlicht in: | Bioresource technology 2013-11, Vol.147, p.221-227 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 227 |
---|---|
container_issue | |
container_start_page | 221 |
container_title | Bioresource technology |
container_volume | 147 |
creator | Llorens, Esther Obradors, Joshua Alarcón-Herrera, María Teresa Poch, Manel |
description | •As retention processes in constructed wetlands were implemented in RCB-ARSENIC.•As precipitation and sorption, and root oxygen release were included.•Data from two planted prototypes were used to test the model.•The simulated data closely matched the data measured in all evaluated cases.•The RCB-ARSENIC model has provided reasonably good response values.
A new model was developed in order to simulate the most significant arsenic retention processes that take place in constructed wetlands (CWs) treating high arsenic waters. The present contribution presents the implementation phases related to plants (arsenic uptake and accumulation, root arsenic adsorption, and root oxygen release), showing the first simulation results of the complete model. Different approaches with diverse influent configurations were simulated. In terms of total arsenic concentrations in effluent, the simulated data closely matched the data measured in all evaluated cases. The iron and arsenic species relationships, and the arsenic retention percentages obtained from simulations, were in agreement with the experimental data and literature. The arsenic retention efficiency increased whenever a new phase was implemented, reaching a maximum efficiency range of 85–95%. According to the quality of the obtained results, it can be considered that the implementation of all steps of RCB-ARSENIC provided reasonably good response values. |
doi_str_mv | 10.1016/j.biortech.2013.08.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642311045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852413012418</els_id><sourcerecordid>1520389668</sourcerecordid><originalsourceid>FETCH-LOGICAL-c464t-d2b043f9bce311cbd28cf64a619944ba49b5b773116fe273277dc4cf9b07d0983</originalsourceid><addsrcrecordid>eNqNkctOHDEQRa0oKAwkv4B6EymbbvxqP3ZEiJdElA1ZW267OvGoxya2J4i_x2gGsoRVLercqlIdhE4IHggm4nQ9TCHlCu7PQDFhA1YDJvQDWhElWU-1FB_RCmuBezVSfoiOSlljjBmR9BM6pExrrgVbIfEjeViWEH93ae5sLhCD6zJUiDWk2IXYuRRLzVtXwXcPUBcbffmMDma7FPiyr8fo1-XF3fl1f_vz6ub8-23vuOC193TCnM16csAIcZOnys2CW0Hafj5ZrqdxkrL1xAxUMiqld9y1AJYea8WO0bfd3Puc_m6hVLMJxbWDbYS0LYYITlsa8_FtdKSYKS3EO6ZyJkfFmOANFTvU5VRKhtnc57Cx-dEQbJ5NmLV5MWGeTRisTDPRgif7HdtpA_419vL6BnzdA7Y4u8zZRhfKf04q0VTqxp3tOGh__hcgm-ICRAc-ZHDV-BTeuuUJIAWowQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437583364</pqid></control><display><type>article</type><title>Modelling of arsenic retention in constructed wetlands</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Llorens, Esther ; Obradors, Joshua ; Alarcón-Herrera, María Teresa ; Poch, Manel</creator><creatorcontrib>Llorens, Esther ; Obradors, Joshua ; Alarcón-Herrera, María Teresa ; Poch, Manel</creatorcontrib><description>•As retention processes in constructed wetlands were implemented in RCB-ARSENIC.•As precipitation and sorption, and root oxygen release were included.•Data from two planted prototypes were used to test the model.•The simulated data closely matched the data measured in all evaluated cases.•The RCB-ARSENIC model has provided reasonably good response values.
A new model was developed in order to simulate the most significant arsenic retention processes that take place in constructed wetlands (CWs) treating high arsenic waters. The present contribution presents the implementation phases related to plants (arsenic uptake and accumulation, root arsenic adsorption, and root oxygen release), showing the first simulation results of the complete model. Different approaches with diverse influent configurations were simulated. In terms of total arsenic concentrations in effluent, the simulated data closely matched the data measured in all evaluated cases. The iron and arsenic species relationships, and the arsenic retention percentages obtained from simulations, were in agreement with the experimental data and literature. The arsenic retention efficiency increased whenever a new phase was implemented, reaching a maximum efficiency range of 85–95%. According to the quality of the obtained results, it can be considered that the implementation of all steps of RCB-ARSENIC provided reasonably good response values.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2013.08.012</identifier><identifier>PMID: 23994963</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Arsenic ; Arsenic - chemistry ; Biological and medical sciences ; Biological treatment of waters ; Biotechnology ; Calibration ; Computer simulation ; Construction ; Effluents ; Environment and pollution ; Fundamental and applied biological sciences. Psychology ; Industrial applications and implications. Economical aspects ; Iron and steel plants ; Models, Chemical ; Phases ; RCB-ARSENIC ; Reed beds ; Roots ; Simulation ; Sorption ; Uptake ; Water Pollutants, Chemical - chemistry ; Wetlands</subject><ispartof>Bioresource technology, 2013-11, Vol.147, p.221-227</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c464t-d2b043f9bce311cbd28cf64a619944ba49b5b773116fe273277dc4cf9b07d0983</citedby><cites>FETCH-LOGICAL-c464t-d2b043f9bce311cbd28cf64a619944ba49b5b773116fe273277dc4cf9b07d0983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2013.08.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27868739$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23994963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorens, Esther</creatorcontrib><creatorcontrib>Obradors, Joshua</creatorcontrib><creatorcontrib>Alarcón-Herrera, María Teresa</creatorcontrib><creatorcontrib>Poch, Manel</creatorcontrib><title>Modelling of arsenic retention in constructed wetlands</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•As retention processes in constructed wetlands were implemented in RCB-ARSENIC.•As precipitation and sorption, and root oxygen release were included.•Data from two planted prototypes were used to test the model.•The simulated data closely matched the data measured in all evaluated cases.•The RCB-ARSENIC model has provided reasonably good response values.
A new model was developed in order to simulate the most significant arsenic retention processes that take place in constructed wetlands (CWs) treating high arsenic waters. The present contribution presents the implementation phases related to plants (arsenic uptake and accumulation, root arsenic adsorption, and root oxygen release), showing the first simulation results of the complete model. Different approaches with diverse influent configurations were simulated. In terms of total arsenic concentrations in effluent, the simulated data closely matched the data measured in all evaluated cases. The iron and arsenic species relationships, and the arsenic retention percentages obtained from simulations, were in agreement with the experimental data and literature. The arsenic retention efficiency increased whenever a new phase was implemented, reaching a maximum efficiency range of 85–95%. According to the quality of the obtained results, it can be considered that the implementation of all steps of RCB-ARSENIC provided reasonably good response values.</description><subject>Arsenic</subject><subject>Arsenic - chemistry</subject><subject>Biological and medical sciences</subject><subject>Biological treatment of waters</subject><subject>Biotechnology</subject><subject>Calibration</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Effluents</subject><subject>Environment and pollution</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Iron and steel plants</subject><subject>Models, Chemical</subject><subject>Phases</subject><subject>RCB-ARSENIC</subject><subject>Reed beds</subject><subject>Roots</subject><subject>Simulation</subject><subject>Sorption</subject><subject>Uptake</subject><subject>Water Pollutants, Chemical - chemistry</subject><subject>Wetlands</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkctOHDEQRa0oKAwkv4B6EymbbvxqP3ZEiJdElA1ZW267OvGoxya2J4i_x2gGsoRVLercqlIdhE4IHggm4nQ9TCHlCu7PQDFhA1YDJvQDWhElWU-1FB_RCmuBezVSfoiOSlljjBmR9BM6pExrrgVbIfEjeViWEH93ae5sLhCD6zJUiDWk2IXYuRRLzVtXwXcPUBcbffmMDma7FPiyr8fo1-XF3fl1f_vz6ub8-23vuOC193TCnM16csAIcZOnys2CW0Hafj5ZrqdxkrL1xAxUMiqld9y1AJYea8WO0bfd3Puc_m6hVLMJxbWDbYS0LYYITlsa8_FtdKSYKS3EO6ZyJkfFmOANFTvU5VRKhtnc57Cx-dEQbJ5NmLV5MWGeTRisTDPRgif7HdtpA_419vL6BnzdA7Y4u8zZRhfKf04q0VTqxp3tOGh__hcgm-ICRAc-ZHDV-BTeuuUJIAWowQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Llorens, Esther</creator><creator>Obradors, Joshua</creator><creator>Alarcón-Herrera, María Teresa</creator><creator>Poch, Manel</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QH</scope><scope>7QO</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>KR7</scope></search><sort><creationdate>20131101</creationdate><title>Modelling of arsenic retention in constructed wetlands</title><author>Llorens, Esther ; Obradors, Joshua ; Alarcón-Herrera, María Teresa ; Poch, Manel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c464t-d2b043f9bce311cbd28cf64a619944ba49b5b773116fe273277dc4cf9b07d0983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arsenic</topic><topic>Arsenic - chemistry</topic><topic>Biological and medical sciences</topic><topic>Biological treatment of waters</topic><topic>Biotechnology</topic><topic>Calibration</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Effluents</topic><topic>Environment and pollution</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Iron and steel plants</topic><topic>Models, Chemical</topic><topic>Phases</topic><topic>RCB-ARSENIC</topic><topic>Reed beds</topic><topic>Roots</topic><topic>Simulation</topic><topic>Sorption</topic><topic>Uptake</topic><topic>Water Pollutants, Chemical - chemistry</topic><topic>Wetlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens, Esther</creatorcontrib><creatorcontrib>Obradors, Joshua</creatorcontrib><creatorcontrib>Alarcón-Herrera, María Teresa</creatorcontrib><creatorcontrib>Poch, Manel</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Aqualine</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens, Esther</au><au>Obradors, Joshua</au><au>Alarcón-Herrera, María Teresa</au><au>Poch, Manel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modelling of arsenic retention in constructed wetlands</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>147</volume><spage>221</spage><epage>227</epage><pages>221-227</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•As retention processes in constructed wetlands were implemented in RCB-ARSENIC.•As precipitation and sorption, and root oxygen release were included.•Data from two planted prototypes were used to test the model.•The simulated data closely matched the data measured in all evaluated cases.•The RCB-ARSENIC model has provided reasonably good response values.
A new model was developed in order to simulate the most significant arsenic retention processes that take place in constructed wetlands (CWs) treating high arsenic waters. The present contribution presents the implementation phases related to plants (arsenic uptake and accumulation, root arsenic adsorption, and root oxygen release), showing the first simulation results of the complete model. Different approaches with diverse influent configurations were simulated. In terms of total arsenic concentrations in effluent, the simulated data closely matched the data measured in all evaluated cases. The iron and arsenic species relationships, and the arsenic retention percentages obtained from simulations, were in agreement with the experimental data and literature. The arsenic retention efficiency increased whenever a new phase was implemented, reaching a maximum efficiency range of 85–95%. According to the quality of the obtained results, it can be considered that the implementation of all steps of RCB-ARSENIC provided reasonably good response values.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23994963</pmid><doi>10.1016/j.biortech.2013.08.012</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-8524 |
ispartof | Bioresource technology, 2013-11, Vol.147, p.221-227 |
issn | 0960-8524 1873-2976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642311045 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Arsenic Arsenic - chemistry Biological and medical sciences Biological treatment of waters Biotechnology Calibration Computer simulation Construction Effluents Environment and pollution Fundamental and applied biological sciences. Psychology Industrial applications and implications. Economical aspects Iron and steel plants Models, Chemical Phases RCB-ARSENIC Reed beds Roots Simulation Sorption Uptake Water Pollutants, Chemical - chemistry Wetlands |
title | Modelling of arsenic retention in constructed wetlands |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A08%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modelling%20of%20arsenic%20retention%20in%20constructed%20wetlands&rft.jtitle=Bioresource%20technology&rft.au=Llorens,%20Esther&rft.date=2013-11-01&rft.volume=147&rft.spage=221&rft.epage=227&rft.pages=221-227&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2013.08.012&rft_dat=%3Cproquest_cross%3E1520389668%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437583364&rft_id=info:pmid/23994963&rft_els_id=S0960852413012418&rfr_iscdi=true |