Microwave irradiation synthesis and characterization of RGO-AgNPs/polystyrene nanocomposites
Polystyrene and reduced graphene oxide/silver (PSTY/RGO/AgNPs) nanocomposites were prepared via an in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of silver nitrate, hydrazine hydrate, and polystyrene containing graphene oxide (PSTY/GO)...
Gespeichert in:
Veröffentlicht in: | Polymer composites 2014-12, Vol.35 (12), p.2318-2323 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2323 |
---|---|
container_issue | 12 |
container_start_page | 2318 |
container_title | Polymer composites |
container_volume | 35 |
creator | Alsharaeh, Edreese H. Othman, Ali A. |
description | Polystyrene and reduced graphene oxide/silver (PSTY/RGO/AgNPs) nanocomposites were prepared via an in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of silver nitrate, hydrazine hydrate, and polystyrene containing graphene oxide (PSTY/GO) were reduced by microwave irradiation (MWI) to obtain R‐(PSTY‐GO)/AgNPs nanocomposites. In the second approach, a mixture of the (RGO/AgNPs) nanocomposite, which was produced via MWI, and STY monomers were polymerized using an in situ bulk polymerization method to obtain PSTY‐RGO/AgNPs nanocomposites. The two nanocomposites were compared and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, high‐resolution transmission electron microscopy, Differential scanning calorimetry, and thermogravimetric analysis. The results indicate that the nanocomposites obtained using the first approach, which involved MWI, exhibited a better morphology and dispersion with enhanced thermal stability compared to the nanocomposites prepared without MWI. POLYM. COMPOS., 35:2318–2323, 2014. © 2014 Society of Plastics Engineers |
doi_str_mv | 10.1002/pc.22896 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642309704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642309704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4646-9617aa5982b12202111a00fefcce3876f93a8b6719e91d836f4825c9b7091b253</originalsourceid><addsrcrecordid>eNp10FtrFDEYxvEgCq5V8CMMiODNtDnM5HBZFrsVemKp6IUQ3s1mbOpsMuadtU4_faO7VhC8ykV-_Hl5CHnN6CGjlB8N7pBzbeQTMmNto2vaSvOUzChXvNbCqOfkBeJtkUxKMSNfzoPL6Q5--CrkDOsAY0ixwimONx4DVhDXlbuBDG70OdzvvlNXLReX9fHXiys8GlI_4ThlH30VISaXNkPCMHp8SZ510KN_tX8PyMeT99fz0_rscvFhfnxWu0Y2sjaSKYDWaL5inJfLGANKO98554VWsjMC9EoqZrxhay1k12jeOrNS1LAVb8UBebfrDjl933oc7Sag830P0actWiYbLqhRtCn0zT_0Nm1zLNcVxZTUSjP5N1i2Qcy-s0MOG8iTZdT-mtkOzv6eudC3-yCgg77LEF3AR1-M4Uqx4uqduwu9n_7bs1fzP929Dzj6n48e8jcrlVCt_XSxsOetPFl-Xp7aa_EAjc6ZRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1617687816</pqid></control><display><type>article</type><title>Microwave irradiation synthesis and characterization of RGO-AgNPs/polystyrene nanocomposites</title><source>Wiley Online Library Journals</source><creator>Alsharaeh, Edreese H. ; Othman, Ali A.</creator><creatorcontrib>Alsharaeh, Edreese H. ; Othman, Ali A.</creatorcontrib><description>Polystyrene and reduced graphene oxide/silver (PSTY/RGO/AgNPs) nanocomposites were prepared via an in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of silver nitrate, hydrazine hydrate, and polystyrene containing graphene oxide (PSTY/GO) were reduced by microwave irradiation (MWI) to obtain R‐(PSTY‐GO)/AgNPs nanocomposites. In the second approach, a mixture of the (RGO/AgNPs) nanocomposite, which was produced via MWI, and STY monomers were polymerized using an in situ bulk polymerization method to obtain PSTY‐RGO/AgNPs nanocomposites. The two nanocomposites were compared and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, high‐resolution transmission electron microscopy, Differential scanning calorimetry, and thermogravimetric analysis. The results indicate that the nanocomposites obtained using the first approach, which involved MWI, exhibited a better morphology and dispersion with enhanced thermal stability compared to the nanocomposites prepared without MWI. POLYM. COMPOS., 35:2318–2323, 2014. © 2014 Society of Plastics Engineers</description><identifier>ISSN: 0272-8397</identifier><identifier>EISSN: 1548-0569</identifier><identifier>DOI: 10.1002/pc.22896</identifier><identifier>CODEN: PCOMDI</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Bulk polymerization ; Composites ; Exact sciences and technology ; Forms of application and semi-finished materials ; Graphene ; Irradiation ; Microwaves ; Nanocomposites ; Oxides ; Particulate composites ; Polymer industry, paints, wood ; Polystyrene resins ; Technology of polymers</subject><ispartof>Polymer composites, 2014-12, Vol.35 (12), p.2318-2323</ispartof><rights>2014 Society of Plastics Engineers</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4646-9617aa5982b12202111a00fefcce3876f93a8b6719e91d836f4825c9b7091b253</citedby><cites>FETCH-LOGICAL-c4646-9617aa5982b12202111a00fefcce3876f93a8b6719e91d836f4825c9b7091b253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpc.22896$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpc.22896$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28992771$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Alsharaeh, Edreese H.</creatorcontrib><creatorcontrib>Othman, Ali A.</creatorcontrib><title>Microwave irradiation synthesis and characterization of RGO-AgNPs/polystyrene nanocomposites</title><title>Polymer composites</title><addtitle>Polym. Compos</addtitle><description>Polystyrene and reduced graphene oxide/silver (PSTY/RGO/AgNPs) nanocomposites were prepared via an in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of silver nitrate, hydrazine hydrate, and polystyrene containing graphene oxide (PSTY/GO) were reduced by microwave irradiation (MWI) to obtain R‐(PSTY‐GO)/AgNPs nanocomposites. In the second approach, a mixture of the (RGO/AgNPs) nanocomposite, which was produced via MWI, and STY monomers were polymerized using an in situ bulk polymerization method to obtain PSTY‐RGO/AgNPs nanocomposites. The two nanocomposites were compared and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, high‐resolution transmission electron microscopy, Differential scanning calorimetry, and thermogravimetric analysis. The results indicate that the nanocomposites obtained using the first approach, which involved MWI, exhibited a better morphology and dispersion with enhanced thermal stability compared to the nanocomposites prepared without MWI. POLYM. COMPOS., 35:2318–2323, 2014. © 2014 Society of Plastics Engineers</description><subject>Applied sciences</subject><subject>Bulk polymerization</subject><subject>Composites</subject><subject>Exact sciences and technology</subject><subject>Forms of application and semi-finished materials</subject><subject>Graphene</subject><subject>Irradiation</subject><subject>Microwaves</subject><subject>Nanocomposites</subject><subject>Oxides</subject><subject>Particulate composites</subject><subject>Polymer industry, paints, wood</subject><subject>Polystyrene resins</subject><subject>Technology of polymers</subject><issn>0272-8397</issn><issn>1548-0569</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10FtrFDEYxvEgCq5V8CMMiODNtDnM5HBZFrsVemKp6IUQ3s1mbOpsMuadtU4_faO7VhC8ykV-_Hl5CHnN6CGjlB8N7pBzbeQTMmNto2vaSvOUzChXvNbCqOfkBeJtkUxKMSNfzoPL6Q5--CrkDOsAY0ixwimONx4DVhDXlbuBDG70OdzvvlNXLReX9fHXiys8GlI_4ThlH30VISaXNkPCMHp8SZ510KN_tX8PyMeT99fz0_rscvFhfnxWu0Y2sjaSKYDWaL5inJfLGANKO98554VWsjMC9EoqZrxhay1k12jeOrNS1LAVb8UBebfrDjl933oc7Sag830P0actWiYbLqhRtCn0zT_0Nm1zLNcVxZTUSjP5N1i2Qcy-s0MOG8iTZdT-mtkOzv6eudC3-yCgg77LEF3AR1-M4Uqx4uqduwu9n_7bs1fzP929Dzj6n48e8jcrlVCt_XSxsOetPFl-Xp7aa_EAjc6ZRw</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Alsharaeh, Edreese H.</creator><creator>Othman, Ali A.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201412</creationdate><title>Microwave irradiation synthesis and characterization of RGO-AgNPs/polystyrene nanocomposites</title><author>Alsharaeh, Edreese H. ; Othman, Ali A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4646-9617aa5982b12202111a00fefcce3876f93a8b6719e91d836f4825c9b7091b253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Bulk polymerization</topic><topic>Composites</topic><topic>Exact sciences and technology</topic><topic>Forms of application and semi-finished materials</topic><topic>Graphene</topic><topic>Irradiation</topic><topic>Microwaves</topic><topic>Nanocomposites</topic><topic>Oxides</topic><topic>Particulate composites</topic><topic>Polymer industry, paints, wood</topic><topic>Polystyrene resins</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alsharaeh, Edreese H.</creatorcontrib><creatorcontrib>Othman, Ali A.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Polymer composites</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alsharaeh, Edreese H.</au><au>Othman, Ali A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave irradiation synthesis and characterization of RGO-AgNPs/polystyrene nanocomposites</atitle><jtitle>Polymer composites</jtitle><addtitle>Polym. Compos</addtitle><date>2014-12</date><risdate>2014</risdate><volume>35</volume><issue>12</issue><spage>2318</spage><epage>2323</epage><pages>2318-2323</pages><issn>0272-8397</issn><eissn>1548-0569</eissn><coden>PCOMDI</coden><abstract>Polystyrene and reduced graphene oxide/silver (PSTY/RGO/AgNPs) nanocomposites were prepared via an in situ bulk polymerization method using two different preparation techniques. In the first approach, a mixture of silver nitrate, hydrazine hydrate, and polystyrene containing graphene oxide (PSTY/GO) were reduced by microwave irradiation (MWI) to obtain R‐(PSTY‐GO)/AgNPs nanocomposites. In the second approach, a mixture of the (RGO/AgNPs) nanocomposite, which was produced via MWI, and STY monomers were polymerized using an in situ bulk polymerization method to obtain PSTY‐RGO/AgNPs nanocomposites. The two nanocomposites were compared and characterized by Fourier transform infrared spectroscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, high‐resolution transmission electron microscopy, Differential scanning calorimetry, and thermogravimetric analysis. The results indicate that the nanocomposites obtained using the first approach, which involved MWI, exhibited a better morphology and dispersion with enhanced thermal stability compared to the nanocomposites prepared without MWI. POLYM. COMPOS., 35:2318–2323, 2014. © 2014 Society of Plastics Engineers</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pc.22896</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0272-8397 |
ispartof | Polymer composites, 2014-12, Vol.35 (12), p.2318-2323 |
issn | 0272-8397 1548-0569 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642309704 |
source | Wiley Online Library Journals |
subjects | Applied sciences Bulk polymerization Composites Exact sciences and technology Forms of application and semi-finished materials Graphene Irradiation Microwaves Nanocomposites Oxides Particulate composites Polymer industry, paints, wood Polystyrene resins Technology of polymers |
title | Microwave irradiation synthesis and characterization of RGO-AgNPs/polystyrene nanocomposites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A48%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20irradiation%20synthesis%20and%20characterization%20of%20RGO-AgNPs/polystyrene%20nanocomposites&rft.jtitle=Polymer%20composites&rft.au=Alsharaeh,%20Edreese%20H.&rft.date=2014-12&rft.volume=35&rft.issue=12&rft.spage=2318&rft.epage=2323&rft.pages=2318-2323&rft.issn=0272-8397&rft.eissn=1548-0569&rft.coden=PCOMDI&rft_id=info:doi/10.1002/pc.22896&rft_dat=%3Cproquest_cross%3E1642309704%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1617687816&rft_id=info:pmid/&rfr_iscdi=true |