Lyapunov-stability of solution branches of rotating disk flow
This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, afte...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2013-07, Vol.25 (7) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 25 |
creator | van Eeten, KMP van der Schaaf, J van Heijst, GJF Schouten, J C |
description | This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation. |
doi_str_mv | 10.1063/1.4812704 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642307059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642307059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKsH_8Ee9bA1M0nzcfAgxapQ8KLnkI1ZjW43a5JV-u9tae8yh3d4eRiYh5BLoDOggt3AjCtASfkRmQBVupZCiOPdLmktBINTcpbzJ6WUaRQTcrva2GHs40-di21CF8qmim2VYzeWEPuqSbZ3Hz7vyhSLLaF_r95C_qraLv6ek5PWdtlfHHJKXpf3L4vHevX88LS4W9WOMVpqZA6lnXNuUTuw3HuFDrhWzjXOqe20aBlqdF5LalXTAHKcI3IJAMqyKbna3x1S_B59LmYdsvNdZ3sfx2xAcGTbD-f6f5QzLbmmqLbo9R51KeacfGuGFNY2bQxQs7NpwBxssj9D1GV_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439749028</pqid></control><display><type>article</type><title>Lyapunov-stability of solution branches of rotating disk flow</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>van Eeten, KMP ; van der Schaaf, J ; van Heijst, GJF ; Schouten, J C</creator><creatorcontrib>van Eeten, KMP ; van der Schaaf, J ; van Heijst, GJF ; Schouten, J C</creatorcontrib><description>This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4812704</identifier><language>eng</language><subject>Angular momentum ; Convection ; Disturbances ; Fluid dynamics ; Fluid flow ; Rotating disks ; Similarity ; Transformations</subject><ispartof>Physics of fluids (1994), 2013-07, Vol.25 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</citedby><cites>FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>van Eeten, KMP</creatorcontrib><creatorcontrib>van der Schaaf, J</creatorcontrib><creatorcontrib>van Heijst, GJF</creatorcontrib><creatorcontrib>Schouten, J C</creatorcontrib><title>Lyapunov-stability of solution branches of rotating disk flow</title><title>Physics of fluids (1994)</title><description>This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.</description><subject>Angular momentum</subject><subject>Convection</subject><subject>Disturbances</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Rotating disks</subject><subject>Similarity</subject><subject>Transformations</subject><issn>1070-6631</issn><issn>0031-9171</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKsH_8Ee9bA1M0nzcfAgxapQ8KLnkI1ZjW43a5JV-u9tae8yh3d4eRiYh5BLoDOggt3AjCtASfkRmQBVupZCiOPdLmktBINTcpbzJ6WUaRQTcrva2GHs40-di21CF8qmim2VYzeWEPuqSbZ3Hz7vyhSLLaF_r95C_qraLv6ek5PWdtlfHHJKXpf3L4vHevX88LS4W9WOMVpqZA6lnXNuUTuw3HuFDrhWzjXOqe20aBlqdF5LalXTAHKcI3IJAMqyKbna3x1S_B59LmYdsvNdZ3sfx2xAcGTbD-f6f5QzLbmmqLbo9R51KeacfGuGFNY2bQxQs7NpwBxssj9D1GV_</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>van Eeten, KMP</creator><creator>van der Schaaf, J</creator><creator>van Heijst, GJF</creator><creator>Schouten, J C</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Lyapunov-stability of solution branches of rotating disk flow</title><author>van Eeten, KMP ; van der Schaaf, J ; van Heijst, GJF ; Schouten, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular momentum</topic><topic>Convection</topic><topic>Disturbances</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Rotating disks</topic><topic>Similarity</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Eeten, KMP</creatorcontrib><creatorcontrib>van der Schaaf, J</creatorcontrib><creatorcontrib>van Heijst, GJF</creatorcontrib><creatorcontrib>Schouten, J C</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Eeten, KMP</au><au>van der Schaaf, J</au><au>van Heijst, GJF</au><au>Schouten, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov-stability of solution branches of rotating disk flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>25</volume><issue>7</issue><issn>1070-6631</issn><issn>0031-9171</issn><eissn>1089-7666</eissn><abstract>This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.</abstract><doi>10.1063/1.4812704</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2013-07, Vol.25 (7) |
issn | 1070-6631 0031-9171 1089-7666 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642307059 |
source | AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection |
subjects | Angular momentum Convection Disturbances Fluid dynamics Fluid flow Rotating disks Similarity Transformations |
title | Lyapunov-stability of solution branches of rotating disk flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov-stability%20of%20solution%20branches%20of%20rotating%20disk%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=van%20Eeten,%20KMP&rft.date=2013-07-01&rft.volume=25&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4812704&rft_dat=%3Cproquest_cross%3E1642307059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439749028&rft_id=info:pmid/&rfr_iscdi=true |