Lyapunov-stability of solution branches of rotating disk flow

This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, afte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2013-07, Vol.25 (7)
Hauptverfasser: van Eeten, KMP, van der Schaaf, J, van Heijst, GJF, Schouten, J C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 25
creator van Eeten, KMP
van der Schaaf, J
van Heijst, GJF
Schouten, J C
description This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.
doi_str_mv 10.1063/1.4812704
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642307059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642307059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</originalsourceid><addsrcrecordid>eNqFkE1LAzEQhoMoWKsH_8Ee9bA1M0nzcfAgxapQ8KLnkI1ZjW43a5JV-u9tae8yh3d4eRiYh5BLoDOggt3AjCtASfkRmQBVupZCiOPdLmktBINTcpbzJ6WUaRQTcrva2GHs40-di21CF8qmim2VYzeWEPuqSbZ3Hz7vyhSLLaF_r95C_qraLv6ek5PWdtlfHHJKXpf3L4vHevX88LS4W9WOMVpqZA6lnXNuUTuw3HuFDrhWzjXOqe20aBlqdF5LalXTAHKcI3IJAMqyKbna3x1S_B59LmYdsvNdZ3sfx2xAcGTbD-f6f5QzLbmmqLbo9R51KeacfGuGFNY2bQxQs7NpwBxssj9D1GV_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1439749028</pqid></control><display><type>article</type><title>Lyapunov-stability of solution branches of rotating disk flow</title><source>AIP Journals Complete</source><source>AIP Digital Archive</source><source>Alma/SFX Local Collection</source><creator>van Eeten, KMP ; van der Schaaf, J ; van Heijst, GJF ; Schouten, J C</creator><creatorcontrib>van Eeten, KMP ; van der Schaaf, J ; van Heijst, GJF ; Schouten, J C</creatorcontrib><description>This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.</description><identifier>ISSN: 1070-6631</identifier><identifier>ISSN: 0031-9171</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/1.4812704</identifier><language>eng</language><subject>Angular momentum ; Convection ; Disturbances ; Fluid dynamics ; Fluid flow ; Rotating disks ; Similarity ; Transformations</subject><ispartof>Physics of fluids (1994), 2013-07, Vol.25 (7)</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</citedby><cites>FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>van Eeten, KMP</creatorcontrib><creatorcontrib>van der Schaaf, J</creatorcontrib><creatorcontrib>van Heijst, GJF</creatorcontrib><creatorcontrib>Schouten, J C</creatorcontrib><title>Lyapunov-stability of solution branches of rotating disk flow</title><title>Physics of fluids (1994)</title><description>This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.</description><subject>Angular momentum</subject><subject>Convection</subject><subject>Disturbances</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Rotating disks</subject><subject>Similarity</subject><subject>Transformations</subject><issn>1070-6631</issn><issn>0031-9171</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LAzEQhoMoWKsH_8Ee9bA1M0nzcfAgxapQ8KLnkI1ZjW43a5JV-u9tae8yh3d4eRiYh5BLoDOggt3AjCtASfkRmQBVupZCiOPdLmktBINTcpbzJ6WUaRQTcrva2GHs40-di21CF8qmim2VYzeWEPuqSbZ3Hz7vyhSLLaF_r95C_qraLv6ek5PWdtlfHHJKXpf3L4vHevX88LS4W9WOMVpqZA6lnXNuUTuw3HuFDrhWzjXOqe20aBlqdF5LalXTAHKcI3IJAMqyKbna3x1S_B59LmYdsvNdZ3sfx2xAcGTbD-f6f5QzLbmmqLbo9R51KeacfGuGFNY2bQxQs7NpwBxssj9D1GV_</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>van Eeten, KMP</creator><creator>van der Schaaf, J</creator><creator>van Heijst, GJF</creator><creator>Schouten, J C</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20130701</creationdate><title>Lyapunov-stability of solution branches of rotating disk flow</title><author>van Eeten, KMP ; van der Schaaf, J ; van Heijst, GJF ; Schouten, J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-23c27a544a29c1a4ee82c1498ccbcc8c8cf2a3292ce970a8bb1242522471118a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Angular momentum</topic><topic>Convection</topic><topic>Disturbances</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Rotating disks</topic><topic>Similarity</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Eeten, KMP</creatorcontrib><creatorcontrib>van der Schaaf, J</creatorcontrib><creatorcontrib>van Heijst, GJF</creatorcontrib><creatorcontrib>Schouten, J C</creatorcontrib><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van Eeten, KMP</au><au>van der Schaaf, J</au><au>van Heijst, GJF</au><au>Schouten, J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lyapunov-stability of solution branches of rotating disk flow</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>25</volume><issue>7</issue><issn>1070-6631</issn><issn>0031-9171</issn><eissn>1089-7666</eissn><abstract>This paper investigates the stability of solutions to the problem of viscous flow between an infinite rotating disk and an infinite stationary disk. A random perturbation, satisfying the Von Karman similarity transformation, is applied to the steady velocity profiles for four solution branches, after which the disturbance propagation is tracked as a function of time. It was found that three of the four solution branches (including the Batchelor solution) were Lyapunov-stable and the development of the Lyapunov-coefficients as a function of the Reynolds number was determined. Stewartson-type of flow was found to be unstable and developed into a flow field corresponding to the Batchelor-solution. The mechanism with which the non-viscous core in this latter type of flow acquired its angular momentum was identified as being dominated by radial convection towards the axis of rotation.</abstract><doi>10.1063/1.4812704</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2013-07, Vol.25 (7)
issn 1070-6631
0031-9171
1089-7666
language eng
recordid cdi_proquest_miscellaneous_1642307059
source AIP Journals Complete; AIP Digital Archive; Alma/SFX Local Collection
subjects Angular momentum
Convection
Disturbances
Fluid dynamics
Fluid flow
Rotating disks
Similarity
Transformations
title Lyapunov-stability of solution branches of rotating disk flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A39%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lyapunov-stability%20of%20solution%20branches%20of%20rotating%20disk%20flow&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=van%20Eeten,%20KMP&rft.date=2013-07-01&rft.volume=25&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft_id=info:doi/10.1063/1.4812704&rft_dat=%3Cproquest_cross%3E1642307059%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1439749028&rft_id=info:pmid/&rfr_iscdi=true