Interferometry of infragravity waves off New Zealand

Wave interferometry is a remote sensing technique, which is increasingly employed in helioseismology, seismology, and acoustics to retrieve parameters of the propagation medium from two‐point cross‐correlation functions of random wavefields. Here we apply interferometry to yearlong records of seaflo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2014-02, Vol.119 (2), p.1103-1122
Hauptverfasser: Godin, Oleg A., Zabotin, Nikolay A., Sheehan, Anne F., Collins, John A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1122
container_issue 2
container_start_page 1103
container_title Journal of geophysical research. Oceans
container_volume 119
creator Godin, Oleg A.
Zabotin, Nikolay A.
Sheehan, Anne F.
Collins, John A.
description Wave interferometry is a remote sensing technique, which is increasingly employed in helioseismology, seismology, and acoustics to retrieve parameters of the propagation medium from two‐point cross‐correlation functions of random wavefields. Here we apply interferometry to yearlong records of seafloor pressure at 28 locations off New Zealand's South Island to investigate propagation and directivity properties of infragravity waves away from shore. A compressed cross‐correlation function technique is proposed to make the interferometry of dispersive waves more robust, decrease the necessary noise averaging time, and simplify retrieval of quantitative information from noise cross correlations. The emergence of deterministic wave arrivals from cross correlations of random wavefields is observed up to the maximum range of 692 km between the pressure sensors in the array. Free, linear waves with a strongly anisotropic distribution of power flux density are found to be dominant in the infragravity wavefield. Lowest‐frequency components of the infragravity wavefield are largely isotropic. The anisotropy has its maximum in the middle of the spectral band and decreases at the high‐frequency end of the spectrum. Highest anisotropy peaks correspond to waves coming from portions of the New Zealand's shoreline. Significant contributions are also observed from waves propagating along the coastline and probably coming from powerful sources in the northeast Pacific. Infragravity wave directivity is markedly different to the east and to the west of the South Island. The northwest coast of the South Island is found to be a net source of the infragravity wave energy. Key Points Background IGWs form a diffuse random anisotropic wavefield off New Zealand Compressed cross‐correlation function technique enhances wave interferometry Interferometry reveals seafloor interaction, spectra, and directionality of IGWs
doi_str_mv 10.1002/2013JC009395
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642304821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1917745963</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5005-fff4a09d6fc93f3274006ba15015e11d80f9c061194859a41c6f4385145797d93</originalsourceid><addsrcrecordid>eNqF0U1LAzEQBuBFFCy1N3_AghcPrs7ka5OjFq2ttYL4AV5C3E1ka9utyba1_94tKyIeai4J4XmHGSaKDhFOEYCcEUA66AIoqvhO1CIoVKKIwt2fd8r3o04IY6iPRMmYakWsP6usd9aXU1v5dVy6uJg5b968WRbVOl6ZpQ31r4tHdhW_WDMxs_wg2nNmEmzn-25Hj1eXD93rZHjX63fPh4nhADxxzjEDKhcuU9RRkjIA8WqQA3KLmEtwKgOBqJjkyjDMhGNUcmQ8VWmuaDs6burOffmxsKHS0yJkdlL3YMtF0CgYocAkwf8pJ0AlCCpqevSHjsuFn9WDaFSYpowrQbcqQSUlghNZq5NGZb4MwVun576YGr_WCHqzFv17LTWnDV8VE7veavWgd98lwPkmlTSpIlT28ydl_LsWKU25fh719JO4lcOLEdU39AvYhpgU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638326528</pqid></control><display><type>article</type><title>Interferometry of infragravity waves off New Zealand</title><source>Wiley-Blackwell Journals</source><source>Wiley Online Library Journals</source><source>Alma/SFX Local Collection</source><creator>Godin, Oleg A. ; Zabotin, Nikolay A. ; Sheehan, Anne F. ; Collins, John A.</creator><creatorcontrib>Godin, Oleg A. ; Zabotin, Nikolay A. ; Sheehan, Anne F. ; Collins, John A.</creatorcontrib><description>Wave interferometry is a remote sensing technique, which is increasingly employed in helioseismology, seismology, and acoustics to retrieve parameters of the propagation medium from two‐point cross‐correlation functions of random wavefields. Here we apply interferometry to yearlong records of seafloor pressure at 28 locations off New Zealand's South Island to investigate propagation and directivity properties of infragravity waves away from shore. A compressed cross‐correlation function technique is proposed to make the interferometry of dispersive waves more robust, decrease the necessary noise averaging time, and simplify retrieval of quantitative information from noise cross correlations. The emergence of deterministic wave arrivals from cross correlations of random wavefields is observed up to the maximum range of 692 km between the pressure sensors in the array. Free, linear waves with a strongly anisotropic distribution of power flux density are found to be dominant in the infragravity wavefield. Lowest‐frequency components of the infragravity wavefield are largely isotropic. The anisotropy has its maximum in the middle of the spectral band and decreases at the high‐frequency end of the spectrum. Highest anisotropy peaks correspond to waves coming from portions of the New Zealand's shoreline. Significant contributions are also observed from waves propagating along the coastline and probably coming from powerful sources in the northeast Pacific. Infragravity wave directivity is markedly different to the east and to the west of the South Island. The northwest coast of the South Island is found to be a net source of the infragravity wave energy. Key Points Background IGWs form a diffuse random anisotropic wavefield off New Zealand Compressed cross‐correlation function technique enhances wave interferometry Interferometry reveals seafloor interaction, spectra, and directionality of IGWs</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2013JC009395</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Acoustic noise ; Acoustics ; Anisotropy ; Arrivals ; Coastal zone management ; Coastlines ; Coasts ; Components ; Correlation ; Correlation analysis ; Cross correlation ; deep ocean ; Density ; Directivity ; Electric power distribution ; Flux density ; Geophysics ; Helioseismology ; Information retrieval ; Interferometry ; Islands ; Linear waves ; Locations (working) ; Marine ; Noise ; Ocean floor ; Pressure ; Pressure sensors ; Properties ; random wave fields ; Remote sensing ; Sea beds ; Seismology ; Sensing techniques ; Sensors ; Shorelines ; Spectra ; Surface gravity waves ; Wave dispersion ; Wave energy ; wave interferometry ; Wave power ; Wave propagation</subject><ispartof>Journal of geophysical research. Oceans, 2014-02, Vol.119 (2), p.1103-1122</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5005-fff4a09d6fc93f3274006ba15015e11d80f9c061194859a41c6f4385145797d93</citedby><cites>FETCH-LOGICAL-a5005-fff4a09d6fc93f3274006ba15015e11d80f9c061194859a41c6f4385145797d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JC009395$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JC009395$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Godin, Oleg A.</creatorcontrib><creatorcontrib>Zabotin, Nikolay A.</creatorcontrib><creatorcontrib>Sheehan, Anne F.</creatorcontrib><creatorcontrib>Collins, John A.</creatorcontrib><title>Interferometry of infragravity waves off New Zealand</title><title>Journal of geophysical research. Oceans</title><addtitle>J. Geophys. Res. Oceans</addtitle><description>Wave interferometry is a remote sensing technique, which is increasingly employed in helioseismology, seismology, and acoustics to retrieve parameters of the propagation medium from two‐point cross‐correlation functions of random wavefields. Here we apply interferometry to yearlong records of seafloor pressure at 28 locations off New Zealand's South Island to investigate propagation and directivity properties of infragravity waves away from shore. A compressed cross‐correlation function technique is proposed to make the interferometry of dispersive waves more robust, decrease the necessary noise averaging time, and simplify retrieval of quantitative information from noise cross correlations. The emergence of deterministic wave arrivals from cross correlations of random wavefields is observed up to the maximum range of 692 km between the pressure sensors in the array. Free, linear waves with a strongly anisotropic distribution of power flux density are found to be dominant in the infragravity wavefield. Lowest‐frequency components of the infragravity wavefield are largely isotropic. The anisotropy has its maximum in the middle of the spectral band and decreases at the high‐frequency end of the spectrum. Highest anisotropy peaks correspond to waves coming from portions of the New Zealand's shoreline. Significant contributions are also observed from waves propagating along the coastline and probably coming from powerful sources in the northeast Pacific. Infragravity wave directivity is markedly different to the east and to the west of the South Island. The northwest coast of the South Island is found to be a net source of the infragravity wave energy. Key Points Background IGWs form a diffuse random anisotropic wavefield off New Zealand Compressed cross‐correlation function technique enhances wave interferometry Interferometry reveals seafloor interaction, spectra, and directionality of IGWs</description><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Anisotropy</subject><subject>Arrivals</subject><subject>Coastal zone management</subject><subject>Coastlines</subject><subject>Coasts</subject><subject>Components</subject><subject>Correlation</subject><subject>Correlation analysis</subject><subject>Cross correlation</subject><subject>deep ocean</subject><subject>Density</subject><subject>Directivity</subject><subject>Electric power distribution</subject><subject>Flux density</subject><subject>Geophysics</subject><subject>Helioseismology</subject><subject>Information retrieval</subject><subject>Interferometry</subject><subject>Islands</subject><subject>Linear waves</subject><subject>Locations (working)</subject><subject>Marine</subject><subject>Noise</subject><subject>Ocean floor</subject><subject>Pressure</subject><subject>Pressure sensors</subject><subject>Properties</subject><subject>random wave fields</subject><subject>Remote sensing</subject><subject>Sea beds</subject><subject>Seismology</subject><subject>Sensing techniques</subject><subject>Sensors</subject><subject>Shorelines</subject><subject>Spectra</subject><subject>Surface gravity waves</subject><subject>Wave dispersion</subject><subject>Wave energy</subject><subject>wave interferometry</subject><subject>Wave power</subject><subject>Wave propagation</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LAzEQBuBFFCy1N3_AghcPrs7ka5OjFq2ttYL4AV5C3E1ka9utyba1_94tKyIeai4J4XmHGSaKDhFOEYCcEUA66AIoqvhO1CIoVKKIwt2fd8r3o04IY6iPRMmYakWsP6usd9aXU1v5dVy6uJg5b968WRbVOl6ZpQ31r4tHdhW_WDMxs_wg2nNmEmzn-25Hj1eXD93rZHjX63fPh4nhADxxzjEDKhcuU9RRkjIA8WqQA3KLmEtwKgOBqJjkyjDMhGNUcmQ8VWmuaDs6burOffmxsKHS0yJkdlL3YMtF0CgYocAkwf8pJ0AlCCpqevSHjsuFn9WDaFSYpowrQbcqQSUlghNZq5NGZb4MwVun576YGr_WCHqzFv17LTWnDV8VE7veavWgd98lwPkmlTSpIlT28ydl_LsWKU25fh719JO4lcOLEdU39AvYhpgU</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Godin, Oleg A.</creator><creator>Zabotin, Nikolay A.</creator><creator>Sheehan, Anne F.</creator><creator>Collins, John A.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7TV</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201402</creationdate><title>Interferometry of infragravity waves off New Zealand</title><author>Godin, Oleg A. ; Zabotin, Nikolay A. ; Sheehan, Anne F. ; Collins, John A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5005-fff4a09d6fc93f3274006ba15015e11d80f9c061194859a41c6f4385145797d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Anisotropy</topic><topic>Arrivals</topic><topic>Coastal zone management</topic><topic>Coastlines</topic><topic>Coasts</topic><topic>Components</topic><topic>Correlation</topic><topic>Correlation analysis</topic><topic>Cross correlation</topic><topic>deep ocean</topic><topic>Density</topic><topic>Directivity</topic><topic>Electric power distribution</topic><topic>Flux density</topic><topic>Geophysics</topic><topic>Helioseismology</topic><topic>Information retrieval</topic><topic>Interferometry</topic><topic>Islands</topic><topic>Linear waves</topic><topic>Locations (working)</topic><topic>Marine</topic><topic>Noise</topic><topic>Ocean floor</topic><topic>Pressure</topic><topic>Pressure sensors</topic><topic>Properties</topic><topic>random wave fields</topic><topic>Remote sensing</topic><topic>Sea beds</topic><topic>Seismology</topic><topic>Sensing techniques</topic><topic>Sensors</topic><topic>Shorelines</topic><topic>Spectra</topic><topic>Surface gravity waves</topic><topic>Wave dispersion</topic><topic>Wave energy</topic><topic>wave interferometry</topic><topic>Wave power</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Godin, Oleg A.</creatorcontrib><creatorcontrib>Zabotin, Nikolay A.</creatorcontrib><creatorcontrib>Sheehan, Anne F.</creatorcontrib><creatorcontrib>Collins, John A.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Godin, Oleg A.</au><au>Zabotin, Nikolay A.</au><au>Sheehan, Anne F.</au><au>Collins, John A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interferometry of infragravity waves off New Zealand</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J. Geophys. Res. Oceans</addtitle><date>2014-02</date><risdate>2014</risdate><volume>119</volume><issue>2</issue><spage>1103</spage><epage>1122</epage><pages>1103-1122</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Wave interferometry is a remote sensing technique, which is increasingly employed in helioseismology, seismology, and acoustics to retrieve parameters of the propagation medium from two‐point cross‐correlation functions of random wavefields. Here we apply interferometry to yearlong records of seafloor pressure at 28 locations off New Zealand's South Island to investigate propagation and directivity properties of infragravity waves away from shore. A compressed cross‐correlation function technique is proposed to make the interferometry of dispersive waves more robust, decrease the necessary noise averaging time, and simplify retrieval of quantitative information from noise cross correlations. The emergence of deterministic wave arrivals from cross correlations of random wavefields is observed up to the maximum range of 692 km between the pressure sensors in the array. Free, linear waves with a strongly anisotropic distribution of power flux density are found to be dominant in the infragravity wavefield. Lowest‐frequency components of the infragravity wavefield are largely isotropic. The anisotropy has its maximum in the middle of the spectral band and decreases at the high‐frequency end of the spectrum. Highest anisotropy peaks correspond to waves coming from portions of the New Zealand's shoreline. Significant contributions are also observed from waves propagating along the coastline and probably coming from powerful sources in the northeast Pacific. Infragravity wave directivity is markedly different to the east and to the west of the South Island. The northwest coast of the South Island is found to be a net source of the infragravity wave energy. Key Points Background IGWs form a diffuse random anisotropic wavefield off New Zealand Compressed cross‐correlation function technique enhances wave interferometry Interferometry reveals seafloor interaction, spectra, and directionality of IGWs</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JC009395</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2014-02, Vol.119 (2), p.1103-1122
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1642304821
source Wiley-Blackwell Journals; Wiley Online Library Journals; Alma/SFX Local Collection
subjects Acoustic noise
Acoustics
Anisotropy
Arrivals
Coastal zone management
Coastlines
Coasts
Components
Correlation
Correlation analysis
Cross correlation
deep ocean
Density
Directivity
Electric power distribution
Flux density
Geophysics
Helioseismology
Information retrieval
Interferometry
Islands
Linear waves
Locations (working)
Marine
Noise
Ocean floor
Pressure
Pressure sensors
Properties
random wave fields
Remote sensing
Sea beds
Seismology
Sensing techniques
Sensors
Shorelines
Spectra
Surface gravity waves
Wave dispersion
Wave energy
wave interferometry
Wave power
Wave propagation
title Interferometry of infragravity waves off New Zealand
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A01%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interferometry%20of%20infragravity%20waves%20off%20New%20Zealand&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Godin,%20Oleg%20A.&rft.date=2014-02&rft.volume=119&rft.issue=2&rft.spage=1103&rft.epage=1122&rft.pages=1103-1122&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2013JC009395&rft_dat=%3Cproquest_cross%3E1917745963%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638326528&rft_id=info:pmid/&rfr_iscdi=true