Poincaré oscillations and geostrophic adjustment in a rotating paraboloid
Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the freq...
Gespeichert in:
Veröffentlicht in: | Fluid dynamics 2009-10, Vol.44 (5), p.759-770 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 770 |
---|---|
container_issue | 5 |
container_start_page | 759 |
container_title | Fluid dynamics |
container_volume | 44 |
creator | Kalashnik, M. V. Kakhiani, V. O. Patarashvili, K. I. Tsakadze, S. J. |
description | Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained. |
doi_str_mv | 10.1134/S0015462809050159 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642303587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024649999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2219-53fca9c369f11954c00ffdaf5c4cbdfcc8a34e79ca0efa2688557dbd0de16f773</originalsourceid><addsrcrecordid>eNqNkMtKBDEQRYMoOI5-gLss3bRWXt2dpQw-ERTUdZPJY8zQk7RJ98JP8jv8MTOMO0GsTRXcc4uqi9ApgXNCGL94BiCC17QFCaKMcg_NiGhY1Qpo9tFsK1db_RAd5bwGANnUdIbun6IPWqWvTxyz9n2vRh9DxioYvLIxjykOb15jZdZTHjc2jNgHrHCKYyHDCg8qqWXsozfH6MCpPtuTnz5Hr9dXL4vb6uHx5m5x-VBpSomsBHNaSc1q6QiRgmsA54xyQnO9NE7rVjFuG6kVWKdo3bZCNGZpwFhSu6Zhc3S22zuk-D7ZPHYbn7Utpwcbp9yRmlMGTLT_QIHymstSBSU7VKeYc7KuG5LfqPRRoG4bcfcr4uKhO08ubFjZ1K3jlEJ5_g_TN0LafxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024649999</pqid></control><display><type>article</type><title>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kalashnik, M. V. ; Kakhiani, V. O. ; Patarashvili, K. I. ; Tsakadze, S. J.</creator><creatorcontrib>Kalashnik, M. V. ; Kakhiani, V. O. ; Patarashvili, K. I. ; Tsakadze, S. J.</creatorcontrib><description>Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462809050159</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Engineering Fluid Dynamics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Hemispheres ; Liquids ; Mathematical analysis ; Oscillations ; Physics ; Physics and Astronomy ; Rotating ; Vortices</subject><ispartof>Fluid dynamics, 2009-10, Vol.44 (5), p.759-770</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2219-53fca9c369f11954c00ffdaf5c4cbdfcc8a34e79ca0efa2688557dbd0de16f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462809050159$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462809050159$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kalashnik, M. V.</creatorcontrib><creatorcontrib>Kakhiani, V. O.</creatorcontrib><creatorcontrib>Patarashvili, K. I.</creatorcontrib><creatorcontrib>Tsakadze, S. J.</creatorcontrib><title>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Hemispheres</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotating</subject><subject>Vortices</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKBDEQRYMoOI5-gLss3bRWXt2dpQw-ERTUdZPJY8zQk7RJ98JP8jv8MTOMO0GsTRXcc4uqi9ApgXNCGL94BiCC17QFCaKMcg_NiGhY1Qpo9tFsK1db_RAd5bwGANnUdIbun6IPWqWvTxyz9n2vRh9DxioYvLIxjykOb15jZdZTHjc2jNgHrHCKYyHDCg8qqWXsozfH6MCpPtuTnz5Hr9dXL4vb6uHx5m5x-VBpSomsBHNaSc1q6QiRgmsA54xyQnO9NE7rVjFuG6kVWKdo3bZCNGZpwFhSu6Zhc3S22zuk-D7ZPHYbn7Utpwcbp9yRmlMGTLT_QIHymstSBSU7VKeYc7KuG5LfqPRRoG4bcfcr4uKhO08ubFjZ1K3jlEJ5_g_TN0LafxQ</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Kalashnik, M. V.</creator><creator>Kakhiani, V. O.</creator><creator>Patarashvili, K. I.</creator><creator>Tsakadze, S. J.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200910</creationdate><title>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</title><author>Kalashnik, M. V. ; Kakhiani, V. O. ; Patarashvili, K. I. ; Tsakadze, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2219-53fca9c369f11954c00ffdaf5c4cbdfcc8a34e79ca0efa2688557dbd0de16f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Hemispheres</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotating</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalashnik, M. V.</creatorcontrib><creatorcontrib>Kakhiani, V. O.</creatorcontrib><creatorcontrib>Patarashvili, K. I.</creatorcontrib><creatorcontrib>Tsakadze, S. J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalashnik, M. V.</au><au>Kakhiani, V. O.</au><au>Patarashvili, K. I.</au><au>Tsakadze, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2009-10</date><risdate>2009</risdate><volume>44</volume><issue>5</issue><spage>759</spage><epage>770</epage><pages>759-770</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0015462809050159</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0015-4628 |
ispartof | Fluid dynamics, 2009-10, Vol.44 (5), p.759-770 |
issn | 0015-4628 1573-8507 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642303587 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Continuum Physics Classical Mechanics Engineering Fluid Dynamics Fluid dynamics Fluid flow Fluid- and Aerodynamics Hemispheres Liquids Mathematical analysis Oscillations Physics Physics and Astronomy Rotating Vortices |
title | Poincaré oscillations and geostrophic adjustment in a rotating paraboloid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poincar%C3%A9%20oscillations%20and%20geostrophic%20adjustment%20in%20a%20rotating%20paraboloid&rft.jtitle=Fluid%20dynamics&rft.au=Kalashnik,%20M.%20V.&rft.date=2009-10&rft.volume=44&rft.issue=5&rft.spage=759&rft.epage=770&rft.pages=759-770&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462809050159&rft_dat=%3Cproquest_cross%3E1024649999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024649999&rft_id=info:pmid/&rfr_iscdi=true |