Poincaré oscillations and geostrophic adjustment in a rotating paraboloid

Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the freq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fluid dynamics 2009-10, Vol.44 (5), p.759-770
Hauptverfasser: Kalashnik, M. V., Kakhiani, V. O., Patarashvili, K. I., Tsakadze, S. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 770
container_issue 5
container_start_page 759
container_title Fluid dynamics
container_volume 44
creator Kalashnik, M. V.
Kakhiani, V. O.
Patarashvili, K. I.
Tsakadze, S. J.
description Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.
doi_str_mv 10.1134/S0015462809050159
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642303587</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1024649999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2219-53fca9c369f11954c00ffdaf5c4cbdfcc8a34e79ca0efa2688557dbd0de16f773</originalsourceid><addsrcrecordid>eNqNkMtKBDEQRYMoOI5-gLss3bRWXt2dpQw-ERTUdZPJY8zQk7RJ98JP8jv8MTOMO0GsTRXcc4uqi9ApgXNCGL94BiCC17QFCaKMcg_NiGhY1Qpo9tFsK1db_RAd5bwGANnUdIbun6IPWqWvTxyz9n2vRh9DxioYvLIxjykOb15jZdZTHjc2jNgHrHCKYyHDCg8qqWXsozfH6MCpPtuTnz5Hr9dXL4vb6uHx5m5x-VBpSomsBHNaSc1q6QiRgmsA54xyQnO9NE7rVjFuG6kVWKdo3bZCNGZpwFhSu6Zhc3S22zuk-D7ZPHYbn7Utpwcbp9yRmlMGTLT_QIHymstSBSU7VKeYc7KuG5LfqPRRoG4bcfcr4uKhO08ubFjZ1K3jlEJ5_g_TN0LafxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1024649999</pqid></control><display><type>article</type><title>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kalashnik, M. V. ; Kakhiani, V. O. ; Patarashvili, K. I. ; Tsakadze, S. J.</creator><creatorcontrib>Kalashnik, M. V. ; Kakhiani, V. O. ; Patarashvili, K. I. ; Tsakadze, S. J.</creatorcontrib><description>Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.</description><identifier>ISSN: 0015-4628</identifier><identifier>EISSN: 1573-8507</identifier><identifier>DOI: 10.1134/S0015462809050159</identifier><language>eng</language><publisher>Dordrecht: SP MAIK Nauka/Interperiodica</publisher><subject>Classical and Continuum Physics ; Classical Mechanics ; Engineering Fluid Dynamics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Hemispheres ; Liquids ; Mathematical analysis ; Oscillations ; Physics ; Physics and Astronomy ; Rotating ; Vortices</subject><ispartof>Fluid dynamics, 2009-10, Vol.44 (5), p.759-770</ispartof><rights>Pleiades Publishing, Ltd. 2009</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2219-53fca9c369f11954c00ffdaf5c4cbdfcc8a34e79ca0efa2688557dbd0de16f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0015462809050159$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0015462809050159$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kalashnik, M. V.</creatorcontrib><creatorcontrib>Kakhiani, V. O.</creatorcontrib><creatorcontrib>Patarashvili, K. I.</creatorcontrib><creatorcontrib>Tsakadze, S. J.</creatorcontrib><title>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</title><title>Fluid dynamics</title><addtitle>Fluid Dyn</addtitle><description>Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.</description><subject>Classical and Continuum Physics</subject><subject>Classical Mechanics</subject><subject>Engineering Fluid Dynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Hemispheres</subject><subject>Liquids</subject><subject>Mathematical analysis</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotating</subject><subject>Vortices</subject><issn>0015-4628</issn><issn>1573-8507</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKBDEQRYMoOI5-gLss3bRWXt2dpQw-ERTUdZPJY8zQk7RJ98JP8jv8MTOMO0GsTRXcc4uqi9ApgXNCGL94BiCC17QFCaKMcg_NiGhY1Qpo9tFsK1db_RAd5bwGANnUdIbun6IPWqWvTxyz9n2vRh9DxioYvLIxjykOb15jZdZTHjc2jNgHrHCKYyHDCg8qqWXsozfH6MCpPtuTnz5Hr9dXL4vb6uHx5m5x-VBpSomsBHNaSc1q6QiRgmsA54xyQnO9NE7rVjFuG6kVWKdo3bZCNGZpwFhSu6Zhc3S22zuk-D7ZPHYbn7Utpwcbp9yRmlMGTLT_QIHymstSBSU7VKeYc7KuG5LfqPRRoG4bcfcr4uKhO08ubFjZ1K3jlEJ5_g_TN0LafxQ</recordid><startdate>200910</startdate><enddate>200910</enddate><creator>Kalashnik, M. V.</creator><creator>Kakhiani, V. O.</creator><creator>Patarashvili, K. I.</creator><creator>Tsakadze, S. J.</creator><general>SP MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200910</creationdate><title>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</title><author>Kalashnik, M. V. ; Kakhiani, V. O. ; Patarashvili, K. I. ; Tsakadze, S. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2219-53fca9c369f11954c00ffdaf5c4cbdfcc8a34e79ca0efa2688557dbd0de16f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Classical and Continuum Physics</topic><topic>Classical Mechanics</topic><topic>Engineering Fluid Dynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Hemispheres</topic><topic>Liquids</topic><topic>Mathematical analysis</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotating</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalashnik, M. V.</creatorcontrib><creatorcontrib>Kakhiani, V. O.</creatorcontrib><creatorcontrib>Patarashvili, K. I.</creatorcontrib><creatorcontrib>Tsakadze, S. J.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fluid dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalashnik, M. V.</au><au>Kakhiani, V. O.</au><au>Patarashvili, K. I.</au><au>Tsakadze, S. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Poincaré oscillations and geostrophic adjustment in a rotating paraboloid</atitle><jtitle>Fluid dynamics</jtitle><stitle>Fluid Dyn</stitle><date>2009-10</date><risdate>2009</risdate><volume>44</volume><issue>5</issue><spage>759</spage><epage>770</epage><pages>759-770</pages><issn>0015-4628</issn><eissn>1573-8507</eissn><abstract>Free liquid oscillations (Poincaré oscillations) in a rotating paraboloid are investigated theoretically and experimentally. Within the framework of shallow-water theory, with account for the centrifugal force, expressions for the free oscillation frequencies are obtained and corrections to the frequencies related with the finiteness of the liquid depth are found. It is shown that in the rotating liquid, apart from the wave modes of free oscillations, a stationary vortex mode is also generated, that is, a process of geostrophic adjustment takes place. Solutions of the shallow-water equations which describe the wave dynamics of the adjustment process are presented. In the experiments performed the wave and vortex modes were excited by removing a previously immersed hemisphere from the central part of the paraboloid. Good agreement between theory and experiment was obtained.</abstract><cop>Dordrecht</cop><pub>SP MAIK Nauka/Interperiodica</pub><doi>10.1134/S0015462809050159</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0015-4628
ispartof Fluid dynamics, 2009-10, Vol.44 (5), p.759-770
issn 0015-4628
1573-8507
language eng
recordid cdi_proquest_miscellaneous_1642303587
source SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Classical Mechanics
Engineering Fluid Dynamics
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Hemispheres
Liquids
Mathematical analysis
Oscillations
Physics
Physics and Astronomy
Rotating
Vortices
title Poincaré oscillations and geostrophic adjustment in a rotating paraboloid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A01%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Poincar%C3%A9%20oscillations%20and%20geostrophic%20adjustment%20in%20a%20rotating%20paraboloid&rft.jtitle=Fluid%20dynamics&rft.au=Kalashnik,%20M.%20V.&rft.date=2009-10&rft.volume=44&rft.issue=5&rft.spage=759&rft.epage=770&rft.pages=759-770&rft.issn=0015-4628&rft.eissn=1573-8507&rft_id=info:doi/10.1134/S0015462809050159&rft_dat=%3Cproquest_cross%3E1024649999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1024649999&rft_id=info:pmid/&rfr_iscdi=true