Electron transport properties of zigzag single walled tin carbide nanotubes
[Display omitted] •Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and...
Gespeichert in:
Veröffentlicht in: | Computational materials science 2014-01, Vol.81, p.326-331 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 331 |
---|---|
container_issue | |
container_start_page | 326 |
container_title | Computational materials science |
container_volume | 81 |
creator | Samanta, Pabitra Narayan Das, Kalyan Kumar |
description | [Display omitted]
•Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states.
A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage. |
doi_str_mv | 10.1016/j.commatsci.2013.08.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642302886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025613004886</els_id><sourcerecordid>1642302886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</originalsourceid><addsrcrecordid>eNqFkMtuGyEUhlGUSHEuzxA2lbqZyQHmAsvIcpOokbJp14iBMxbWeHAAt6qfPliOvO3qbP7b-Qh5YFAzYN3jprZhuzU5WV9zYKIGWYNoL8iCyV5VIIFdkgUo3lfA2-6a3KS0geJUki_Iz9WENscw0xzNnHYhZrqLYYcxe0w0jPTg1wezpsnP6wnpXzNN6Gj2M7UmDt4hnc0c8n7AdEeuRjMlvP-6t-T3j9Wv5Uv19v78unx6qyxXIlcNG90ITiFDBFRCSuwAhTOuH5VVomkdE1bB0CoxgDIDArTcdP3IwHQNiFvy_ZRbhn7sMWW99cniNJkZwz5p1jVcAJeyK9L-JLUxpBRx1Lvotyb-0wz0EZ_e6DM-fcSnQeqCrzi_fZWYZM00FjrWp7OdS2iU7I4NTycdlo__eIy6JOFs0flYyGoX_H-7PgHWfItL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642302886</pqid></control><display><type>article</type><title>Electron transport properties of zigzag single walled tin carbide nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Samanta, Pabitra Narayan ; Das, Kalyan Kumar</creator><creatorcontrib>Samanta, Pabitra Narayan ; Das, Kalyan Kumar</creatorcontrib><description>[Display omitted]
•Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states.
A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2013.08.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bias ; Computation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Devices ; Electric potential ; Electron transport ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; I–V curves ; Mathematical analysis ; MPSH ; Nanotubes ; NDR effects ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Tin–carbide nanotubes ; Transmission spectra ; Voltage</subject><ispartof>Computational materials science, 2014-01, Vol.81, p.326-331</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</citedby><cites>FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2013.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28049866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Samanta, Pabitra Narayan</creatorcontrib><creatorcontrib>Das, Kalyan Kumar</creatorcontrib><title>Electron transport properties of zigzag single walled tin carbide nanotubes</title><title>Computational materials science</title><description>[Display omitted]
•Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states.
A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.</description><subject>Bias</subject><subject>Computation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electron transport</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>I–V curves</subject><subject>Mathematical analysis</subject><subject>MPSH</subject><subject>Nanotubes</subject><subject>NDR effects</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Tin–carbide nanotubes</subject><subject>Transmission spectra</subject><subject>Voltage</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtuGyEUhlGUSHEuzxA2lbqZyQHmAsvIcpOokbJp14iBMxbWeHAAt6qfPliOvO3qbP7b-Qh5YFAzYN3jprZhuzU5WV9zYKIGWYNoL8iCyV5VIIFdkgUo3lfA2-6a3KS0geJUki_Iz9WENscw0xzNnHYhZrqLYYcxe0w0jPTg1wezpsnP6wnpXzNN6Gj2M7UmDt4hnc0c8n7AdEeuRjMlvP-6t-T3j9Wv5Uv19v78unx6qyxXIlcNG90ITiFDBFRCSuwAhTOuH5VVomkdE1bB0CoxgDIDArTcdP3IwHQNiFvy_ZRbhn7sMWW99cniNJkZwz5p1jVcAJeyK9L-JLUxpBRx1Lvotyb-0wz0EZ_e6DM-fcSnQeqCrzi_fZWYZM00FjrWp7OdS2iU7I4NTycdlo__eIy6JOFs0flYyGoX_H-7PgHWfItL</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Samanta, Pabitra Narayan</creator><creator>Das, Kalyan Kumar</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Electron transport properties of zigzag single walled tin carbide nanotubes</title><author>Samanta, Pabitra Narayan ; Das, Kalyan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bias</topic><topic>Computation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electron transport</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>I–V curves</topic><topic>Mathematical analysis</topic><topic>MPSH</topic><topic>Nanotubes</topic><topic>NDR effects</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Tin–carbide nanotubes</topic><topic>Transmission spectra</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samanta, Pabitra Narayan</creatorcontrib><creatorcontrib>Das, Kalyan Kumar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samanta, Pabitra Narayan</au><au>Das, Kalyan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transport properties of zigzag single walled tin carbide nanotubes</atitle><jtitle>Computational materials science</jtitle><date>2014-01</date><risdate>2014</risdate><volume>81</volume><spage>326</spage><epage>331</epage><pages>326-331</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted]
•Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states.
A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2013.08.035</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-0256 |
ispartof | Computational materials science, 2014-01, Vol.81, p.326-331 |
issn | 0927-0256 1879-0801 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642302886 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Bias Computation Condensed matter: electronic structure, electrical, magnetic, and optical properties Devices Electric potential Electron transport Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures Electronic transport in multilayers, nanoscale materials and structures Exact sciences and technology I–V curves Mathematical analysis MPSH Nanotubes NDR effects Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures Physics Tin–carbide nanotubes Transmission spectra Voltage |
title | Electron transport properties of zigzag single walled tin carbide nanotubes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transport%20properties%20of%20zigzag%20single%20walled%20tin%20carbide%20nanotubes&rft.jtitle=Computational%20materials%20science&rft.au=Samanta,%20Pabitra%20Narayan&rft.date=2014-01&rft.volume=81&rft.spage=326&rft.epage=331&rft.pages=326-331&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2013.08.035&rft_dat=%3Cproquest_cross%3E1642302886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642302886&rft_id=info:pmid/&rft_els_id=S0927025613004886&rfr_iscdi=true |