Electron transport properties of zigzag single walled tin carbide nanotubes

[Display omitted] •Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational materials science 2014-01, Vol.81, p.326-331
Hauptverfasser: Samanta, Pabitra Narayan, Das, Kalyan Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 331
container_issue
container_start_page 326
container_title Computational materials science
container_volume 81
creator Samanta, Pabitra Narayan
Das, Kalyan Kumar
description [Display omitted] •Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states. A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.
doi_str_mv 10.1016/j.commatsci.2013.08.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642302886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927025613004886</els_id><sourcerecordid>1642302886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</originalsourceid><addsrcrecordid>eNqFkMtuGyEUhlGUSHEuzxA2lbqZyQHmAsvIcpOokbJp14iBMxbWeHAAt6qfPliOvO3qbP7b-Qh5YFAzYN3jprZhuzU5WV9zYKIGWYNoL8iCyV5VIIFdkgUo3lfA2-6a3KS0geJUki_Iz9WENscw0xzNnHYhZrqLYYcxe0w0jPTg1wezpsnP6wnpXzNN6Gj2M7UmDt4hnc0c8n7AdEeuRjMlvP-6t-T3j9Wv5Uv19v78unx6qyxXIlcNG90ITiFDBFRCSuwAhTOuH5VVomkdE1bB0CoxgDIDArTcdP3IwHQNiFvy_ZRbhn7sMWW99cniNJkZwz5p1jVcAJeyK9L-JLUxpBRx1Lvotyb-0wz0EZ_e6DM-fcSnQeqCrzi_fZWYZM00FjrWp7OdS2iU7I4NTycdlo__eIy6JOFs0flYyGoX_H-7PgHWfItL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642302886</pqid></control><display><type>article</type><title>Electron transport properties of zigzag single walled tin carbide nanotubes</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Samanta, Pabitra Narayan ; Das, Kalyan Kumar</creator><creatorcontrib>Samanta, Pabitra Narayan ; Das, Kalyan Kumar</creatorcontrib><description>[Display omitted] •Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states. A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.</description><identifier>ISSN: 0927-0256</identifier><identifier>EISSN: 1879-0801</identifier><identifier>DOI: 10.1016/j.commatsci.2013.08.035</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bias ; Computation ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Devices ; Electric potential ; Electron transport ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Electronic transport in multilayers, nanoscale materials and structures ; Exact sciences and technology ; I–V curves ; Mathematical analysis ; MPSH ; Nanotubes ; NDR effects ; Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation ; Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures ; Physics ; Tin–carbide nanotubes ; Transmission spectra ; Voltage</subject><ispartof>Computational materials science, 2014-01, Vol.81, p.326-331</ispartof><rights>2013 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</citedby><cites>FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.commatsci.2013.08.035$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,4009,27902,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28049866$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Samanta, Pabitra Narayan</creatorcontrib><creatorcontrib>Das, Kalyan Kumar</creatorcontrib><title>Electron transport properties of zigzag single walled tin carbide nanotubes</title><title>Computational materials science</title><description>[Display omitted] •Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states. A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.</description><subject>Bias</subject><subject>Computation</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Devices</subject><subject>Electric potential</subject><subject>Electron transport</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Electronic transport in multilayers, nanoscale materials and structures</subject><subject>Exact sciences and technology</subject><subject>I–V curves</subject><subject>Mathematical analysis</subject><subject>MPSH</subject><subject>Nanotubes</subject><subject>NDR effects</subject><subject>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</subject><subject>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</subject><subject>Physics</subject><subject>Tin–carbide nanotubes</subject><subject>Transmission spectra</subject><subject>Voltage</subject><issn>0927-0256</issn><issn>1879-0801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtuGyEUhlGUSHEuzxA2lbqZyQHmAsvIcpOokbJp14iBMxbWeHAAt6qfPliOvO3qbP7b-Qh5YFAzYN3jprZhuzU5WV9zYKIGWYNoL8iCyV5VIIFdkgUo3lfA2-6a3KS0geJUki_Iz9WENscw0xzNnHYhZrqLYYcxe0w0jPTg1wezpsnP6wnpXzNN6Gj2M7UmDt4hnc0c8n7AdEeuRjMlvP-6t-T3j9Wv5Uv19v78unx6qyxXIlcNG90ITiFDBFRCSuwAhTOuH5VVomkdE1bB0CoxgDIDArTcdP3IwHQNiFvy_ZRbhn7sMWW99cniNJkZwz5p1jVcAJeyK9L-JLUxpBRx1Lvotyb-0wz0EZ_e6DM-fcSnQeqCrzi_fZWYZM00FjrWp7OdS2iU7I4NTycdlo__eIy6JOFs0flYyGoX_H-7PgHWfItL</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Samanta, Pabitra Narayan</creator><creator>Das, Kalyan Kumar</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201401</creationdate><title>Electron transport properties of zigzag single walled tin carbide nanotubes</title><author>Samanta, Pabitra Narayan ; Das, Kalyan Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-41fdf0d9e1ee0e9388e60e3dad7f9c9345d13c90b593b09abe0052a67f10a6403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bias</topic><topic>Computation</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Devices</topic><topic>Electric potential</topic><topic>Electron transport</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Electronic transport in multilayers, nanoscale materials and structures</topic><topic>Exact sciences and technology</topic><topic>I–V curves</topic><topic>Mathematical analysis</topic><topic>MPSH</topic><topic>Nanotubes</topic><topic>NDR effects</topic><topic>Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation</topic><topic>Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures</topic><topic>Physics</topic><topic>Tin–carbide nanotubes</topic><topic>Transmission spectra</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Samanta, Pabitra Narayan</creatorcontrib><creatorcontrib>Das, Kalyan Kumar</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Samanta, Pabitra Narayan</au><au>Das, Kalyan Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electron transport properties of zigzag single walled tin carbide nanotubes</atitle><jtitle>Computational materials science</jtitle><date>2014-01</date><risdate>2014</risdate><volume>81</volume><spage>326</spage><epage>331</epage><pages>326-331</pages><issn>0927-0256</issn><eissn>1879-0801</eissn><abstract>[Display omitted] •Electron transport properties of zigzag single-walled SnC nanotubes are studied.•DFT and NEGF methodologies are used for this purpose.•Transmission coefficients and I–V characteristics for three chiralities are computed.•NDR in I–V curves are analyzed from transmission spectra and MPSH states. A combined method of density functional theory and non-equilibrium Green’s function formalism has been used to study the electron transport properties of zigzag single walled SnC nanotubes (SnCNTs) of different chiralities. Band structures of zigzag SnCNTs from (4,0) to (6,0) are calculated using 1×1×100 k-point sampling. Transmission coefficients are computed for (n,0) SnCNT (n=4,5,6) devices at various positive and negative bias voltages within ±2.4V. The current–voltage (I–V) curves in this bias voltage region show negative differential resistance (NDR), which is analyzed from the transmission spectra and molecular projected self-consistent Hamiltonian (MPSH) states. The rectifying performances of these devices are investigated by calculating the rectification ratio (I+/I−) with the bias voltage.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.commatsci.2013.08.035</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0256
ispartof Computational materials science, 2014-01, Vol.81, p.326-331
issn 0927-0256
1879-0801
language eng
recordid cdi_proquest_miscellaneous_1642302886
source Elsevier ScienceDirect Journals Complete
subjects Bias
Computation
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Devices
Electric potential
Electron transport
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Electronic transport in multilayers, nanoscale materials and structures
Exact sciences and technology
I–V curves
Mathematical analysis
MPSH
Nanotubes
NDR effects
Optical properties and condensed-matter spectroscopy and other interactions of matter with particles and radiation
Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures
Physics
Tin–carbide nanotubes
Transmission spectra
Voltage
title Electron transport properties of zigzag single walled tin carbide nanotubes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electron%20transport%20properties%20of%20zigzag%20single%20walled%20tin%20carbide%20nanotubes&rft.jtitle=Computational%20materials%20science&rft.au=Samanta,%20Pabitra%20Narayan&rft.date=2014-01&rft.volume=81&rft.spage=326&rft.epage=331&rft.pages=326-331&rft.issn=0927-0256&rft.eissn=1879-0801&rft_id=info:doi/10.1016/j.commatsci.2013.08.035&rft_dat=%3Cproquest_cross%3E1642302886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642302886&rft_id=info:pmid/&rft_els_id=S0927025613004886&rfr_iscdi=true