Computer simulation of the role of protein corona in cellular delivery of nanoparticles

Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomaterials 2014-10, Vol.35 (30), p.8703-8710
Hauptverfasser: Ding, Hong-ming, Ma, Yu-qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8710
container_issue 30
container_start_page 8703
container_title Biomaterials
container_volume 35
creator Ding, Hong-ming
Ma, Yu-qiang
description Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.
doi_str_mv 10.1016/j.biomaterials.2014.06.033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642302243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214007248</els_id><sourcerecordid>1627956093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</originalsourceid><addsrcrecordid>eNqNks-r1DAQx4MovvXpvyDFk5fWSdKkiQdB9vkLHnhQ8RjSdIpZ22ZN2gf735uwTxFPe8pk8pnvDPkOIS8oNBSofHVoeh9mu2L0dkoNA9o2IBvg_AHZUdWpWmgQD8kuP7BaS8quyJOUDpDv0LLH5IoJACEV3ZHv-zAftyxVJT9vk119WKowVusPrGKYsMTHGFb0S-VCDIutSoTTlOFYDTj5O4yngi12CUcbV-8mTE_JozEPh8_uz2vy7f27r_uP9e3nD5_2b29rJ2S31h1zUitmexCdakdoh7GVHYWxl2oQdmB6yCmlaa-lE1Yh1xzoSEdOrUTF-TV5edbNQ_7aMK1m9qmMZxcMWzJUtowDY-0lKOu0kKAvQEWrJOdC6oy-PqMuhpQijuYY_WzjyVAwxS5zMP_aZYpdBqTJduXi5_d9tn7G4W_pH38ycHMGMP_hncdokvO4OBx8RLeaIfjL-rz5T8ZNfvHOTj_xhOkQtriUGmoSM2C-lMUpe5P3BTrWKv4bnhHBmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548633569</pqid></control><display><type>article</type><title>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ding, Hong-ming ; Ma, Yu-qiang</creator><creatorcontrib>Ding, Hong-ming ; Ma, Yu-qiang</creatorcontrib><description>Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.06.033</identifier><identifier>PMID: 25005681</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adsorption ; Advanced Basic Science ; Amino Acids - chemistry ; Cellular ; Cellular uptake ; Charging ; Computer Simulation ; Coronas ; Dentistry ; Drug Delivery Systems ; Humans ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immune response ; Membranes ; Molecular modeling ; Nanoparticle ; Nanoparticles ; Nanoparticles - chemistry ; Protein Binding ; Protein corona ; Proteins ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Surgical implants ; Time Factors</subject><ispartof>Biomaterials, 2014-10, Vol.35 (30), p.8703-8710</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</citedby><cites>FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.06.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25005681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Hong-ming</creatorcontrib><creatorcontrib>Ma, Yu-qiang</creatorcontrib><title>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.</description><subject>Adsorption</subject><subject>Advanced Basic Science</subject><subject>Amino Acids - chemistry</subject><subject>Cellular</subject><subject>Cellular uptake</subject><subject>Charging</subject><subject>Computer Simulation</subject><subject>Coronas</subject><subject>Dentistry</subject><subject>Drug Delivery Systems</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Immune response</subject><subject>Membranes</subject><subject>Molecular modeling</subject><subject>Nanoparticle</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Protein Binding</subject><subject>Protein corona</subject><subject>Proteins</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Surgical implants</subject><subject>Time Factors</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-r1DAQx4MovvXpvyDFk5fWSdKkiQdB9vkLHnhQ8RjSdIpZ22ZN2gf735uwTxFPe8pk8pnvDPkOIS8oNBSofHVoeh9mu2L0dkoNA9o2IBvg_AHZUdWpWmgQD8kuP7BaS8quyJOUDpDv0LLH5IoJACEV3ZHv-zAftyxVJT9vk119WKowVusPrGKYsMTHGFb0S-VCDIutSoTTlOFYDTj5O4yngi12CUcbV-8mTE_JozEPh8_uz2vy7f27r_uP9e3nD5_2b29rJ2S31h1zUitmexCdakdoh7GVHYWxl2oQdmB6yCmlaa-lE1Yh1xzoSEdOrUTF-TV5edbNQ_7aMK1m9qmMZxcMWzJUtowDY-0lKOu0kKAvQEWrJOdC6oy-PqMuhpQijuYY_WzjyVAwxS5zMP_aZYpdBqTJduXi5_d9tn7G4W_pH38ycHMGMP_hncdokvO4OBx8RLeaIfjL-rz5T8ZNfvHOTj_xhOkQtriUGmoSM2C-lMUpe5P3BTrWKv4bnhHBmA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ding, Hong-ming</creator><creator>Ma, Yu-qiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</title><author>Ding, Hong-ming ; Ma, Yu-qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Advanced Basic Science</topic><topic>Amino Acids - chemistry</topic><topic>Cellular</topic><topic>Cellular uptake</topic><topic>Charging</topic><topic>Computer Simulation</topic><topic>Coronas</topic><topic>Dentistry</topic><topic>Drug Delivery Systems</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Immune response</topic><topic>Membranes</topic><topic>Molecular modeling</topic><topic>Nanoparticle</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Protein Binding</topic><topic>Protein corona</topic><topic>Proteins</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Surgical implants</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Hong-ming</creatorcontrib><creatorcontrib>Ma, Yu-qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Hong-ming</au><au>Ma, Yu-qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>35</volume><issue>30</issue><spage>8703</spage><epage>8710</epage><pages>8703-8710</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25005681</pmid><doi>10.1016/j.biomaterials.2014.06.033</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-9612
ispartof Biomaterials, 2014-10, Vol.35 (30), p.8703-8710
issn 0142-9612
1878-5905
language eng
recordid cdi_proquest_miscellaneous_1642302243
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Adsorption
Advanced Basic Science
Amino Acids - chemistry
Cellular
Cellular uptake
Charging
Computer Simulation
Coronas
Dentistry
Drug Delivery Systems
Humans
Hydrogen-Ion Concentration
Hydrophobic and Hydrophilic Interactions
Immune response
Membranes
Molecular modeling
Nanoparticle
Nanoparticles
Nanoparticles - chemistry
Protein Binding
Protein corona
Proteins
Serum Albumin - chemistry
Serum Albumin - metabolism
Surgical implants
Time Factors
title Computer simulation of the role of protein corona in cellular delivery of nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20the%20role%20of%20protein%20corona%20in%20cellular%20delivery%20of%20nanoparticles&rft.jtitle=Biomaterials&rft.au=Ding,%20Hong-ming&rft.date=2014-10-01&rft.volume=35&rft.issue=30&rft.spage=8703&rft.epage=8710&rft.pages=8703-8710&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.06.033&rft_dat=%3Cproquest_cross%3E1627956093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548633569&rft_id=info:pmid/25005681&rft_els_id=1_s2_0_S0142961214007248&rfr_iscdi=true