Computer simulation of the role of protein corona in cellular delivery of nanoparticles
Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2014-10, Vol.35 (30), p.8703-8710 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8710 |
---|---|
container_issue | 30 |
container_start_page | 8703 |
container_title | Biomaterials |
container_volume | 35 |
creator | Ding, Hong-ming Ma, Yu-qiang |
description | Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery. |
doi_str_mv | 10.1016/j.biomaterials.2014.06.033 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642302243</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0142961214007248</els_id><sourcerecordid>1627956093</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</originalsourceid><addsrcrecordid>eNqNks-r1DAQx4MovvXpvyDFk5fWSdKkiQdB9vkLHnhQ8RjSdIpZ22ZN2gf735uwTxFPe8pk8pnvDPkOIS8oNBSofHVoeh9mu2L0dkoNA9o2IBvg_AHZUdWpWmgQD8kuP7BaS8quyJOUDpDv0LLH5IoJACEV3ZHv-zAftyxVJT9vk119WKowVusPrGKYsMTHGFb0S-VCDIutSoTTlOFYDTj5O4yngi12CUcbV-8mTE_JozEPh8_uz2vy7f27r_uP9e3nD5_2b29rJ2S31h1zUitmexCdakdoh7GVHYWxl2oQdmB6yCmlaa-lE1Yh1xzoSEdOrUTF-TV5edbNQ_7aMK1m9qmMZxcMWzJUtowDY-0lKOu0kKAvQEWrJOdC6oy-PqMuhpQijuYY_WzjyVAwxS5zMP_aZYpdBqTJduXi5_d9tn7G4W_pH38ycHMGMP_hncdokvO4OBx8RLeaIfjL-rz5T8ZNfvHOTj_xhOkQtriUGmoSM2C-lMUpe5P3BTrWKv4bnhHBmA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1548633569</pqid></control><display><type>article</type><title>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Ding, Hong-ming ; Ma, Yu-qiang</creator><creatorcontrib>Ding, Hong-ming ; Ma, Yu-qiang</creatorcontrib><description>Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.</description><identifier>ISSN: 0142-9612</identifier><identifier>EISSN: 1878-5905</identifier><identifier>DOI: 10.1016/j.biomaterials.2014.06.033</identifier><identifier>PMID: 25005681</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Adsorption ; Advanced Basic Science ; Amino Acids - chemistry ; Cellular ; Cellular uptake ; Charging ; Computer Simulation ; Coronas ; Dentistry ; Drug Delivery Systems ; Humans ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Immune response ; Membranes ; Molecular modeling ; Nanoparticle ; Nanoparticles ; Nanoparticles - chemistry ; Protein Binding ; Protein corona ; Proteins ; Serum Albumin - chemistry ; Serum Albumin - metabolism ; Surgical implants ; Time Factors</subject><ispartof>Biomaterials, 2014-10, Vol.35 (30), p.8703-8710</ispartof><rights>Elsevier Ltd</rights><rights>2014 Elsevier Ltd</rights><rights>Copyright © 2014 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</citedby><cites>FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biomaterials.2014.06.033$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25005681$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Hong-ming</creatorcontrib><creatorcontrib>Ma, Yu-qiang</creatorcontrib><title>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</title><title>Biomaterials</title><addtitle>Biomaterials</addtitle><description>Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.</description><subject>Adsorption</subject><subject>Advanced Basic Science</subject><subject>Amino Acids - chemistry</subject><subject>Cellular</subject><subject>Cellular uptake</subject><subject>Charging</subject><subject>Computer Simulation</subject><subject>Coronas</subject><subject>Dentistry</subject><subject>Drug Delivery Systems</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Immune response</subject><subject>Membranes</subject><subject>Molecular modeling</subject><subject>Nanoparticle</subject><subject>Nanoparticles</subject><subject>Nanoparticles - chemistry</subject><subject>Protein Binding</subject><subject>Protein corona</subject><subject>Proteins</subject><subject>Serum Albumin - chemistry</subject><subject>Serum Albumin - metabolism</subject><subject>Surgical implants</subject><subject>Time Factors</subject><issn>0142-9612</issn><issn>1878-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks-r1DAQx4MovvXpvyDFk5fWSdKkiQdB9vkLHnhQ8RjSdIpZ22ZN2gf735uwTxFPe8pk8pnvDPkOIS8oNBSofHVoeh9mu2L0dkoNA9o2IBvg_AHZUdWpWmgQD8kuP7BaS8quyJOUDpDv0LLH5IoJACEV3ZHv-zAftyxVJT9vk119WKowVusPrGKYsMTHGFb0S-VCDIutSoTTlOFYDTj5O4yngi12CUcbV-8mTE_JozEPh8_uz2vy7f27r_uP9e3nD5_2b29rJ2S31h1zUitmexCdakdoh7GVHYWxl2oQdmB6yCmlaa-lE1Yh1xzoSEdOrUTF-TV5edbNQ_7aMK1m9qmMZxcMWzJUtowDY-0lKOu0kKAvQEWrJOdC6oy-PqMuhpQijuYY_WzjyVAwxS5zMP_aZYpdBqTJduXi5_d9tn7G4W_pH38ycHMGMP_hncdokvO4OBx8RLeaIfjL-rz5T8ZNfvHOTj_xhOkQtriUGmoSM2C-lMUpe5P3BTrWKv4bnhHBmA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Ding, Hong-ming</creator><creator>Ma, Yu-qiang</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141001</creationdate><title>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</title><author>Ding, Hong-ming ; Ma, Yu-qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-72c6982ab05784f04df46710fb68d5ad29d4df891b96c5a8e39301f1f31a6e833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adsorption</topic><topic>Advanced Basic Science</topic><topic>Amino Acids - chemistry</topic><topic>Cellular</topic><topic>Cellular uptake</topic><topic>Charging</topic><topic>Computer Simulation</topic><topic>Coronas</topic><topic>Dentistry</topic><topic>Drug Delivery Systems</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Immune response</topic><topic>Membranes</topic><topic>Molecular modeling</topic><topic>Nanoparticle</topic><topic>Nanoparticles</topic><topic>Nanoparticles - chemistry</topic><topic>Protein Binding</topic><topic>Protein corona</topic><topic>Proteins</topic><topic>Serum Albumin - chemistry</topic><topic>Serum Albumin - metabolism</topic><topic>Surgical implants</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Hong-ming</creatorcontrib><creatorcontrib>Ma, Yu-qiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Biomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Hong-ming</au><au>Ma, Yu-qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer simulation of the role of protein corona in cellular delivery of nanoparticles</atitle><jtitle>Biomaterials</jtitle><addtitle>Biomaterials</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>35</volume><issue>30</issue><spage>8703</spage><epage>8710</epage><pages>8703-8710</pages><issn>0142-9612</issn><eissn>1878-5905</eissn><abstract>Abstract Understanding the role of serum protein in the process of nanoparticle delivery is of great importance in biomedicine. Here, by using dissipative particle dynamics simulations, we systematically investigate the interactions between the nanoparticle-protein corona complex and cell membranes of different types. It is found that the human serum albumin (HSA) will just adsorb onto charged (especially for positively charged) and hydrophobic nanoparticle surface. More importantly, we also provide specific insights into the effect of HSA adsorption on the in vivo transportation of nanoparticle (i.e., immune response and targeted cellular uptake). Our results show that the protein corona can change the interaction modes of hydrophobic nanoparticles and enhance the interaction of charged nanoparticles with macrophage cell membranes, while it may also cause the failure of insertion of hydrophobic nanoparticles and the loss of targeting specificity of charged nanoparticles with cancer cell membranes. These results can help better understand the biological significance of protein corona and may give some useful suggestions on better design of future nanoparticles in drug delivery.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>25005681</pmid><doi>10.1016/j.biomaterials.2014.06.033</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-9612 |
ispartof | Biomaterials, 2014-10, Vol.35 (30), p.8703-8710 |
issn | 0142-9612 1878-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642302243 |
source | MEDLINE; Access via ScienceDirect (Elsevier) |
subjects | Adsorption Advanced Basic Science Amino Acids - chemistry Cellular Cellular uptake Charging Computer Simulation Coronas Dentistry Drug Delivery Systems Humans Hydrogen-Ion Concentration Hydrophobic and Hydrophilic Interactions Immune response Membranes Molecular modeling Nanoparticle Nanoparticles Nanoparticles - chemistry Protein Binding Protein corona Proteins Serum Albumin - chemistry Serum Albumin - metabolism Surgical implants Time Factors |
title | Computer simulation of the role of protein corona in cellular delivery of nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A13%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20simulation%20of%20the%20role%20of%20protein%20corona%20in%20cellular%20delivery%20of%20nanoparticles&rft.jtitle=Biomaterials&rft.au=Ding,%20Hong-ming&rft.date=2014-10-01&rft.volume=35&rft.issue=30&rft.spage=8703&rft.epage=8710&rft.pages=8703-8710&rft.issn=0142-9612&rft.eissn=1878-5905&rft_id=info:doi/10.1016/j.biomaterials.2014.06.033&rft_dat=%3Cproquest_cross%3E1627956093%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1548633569&rft_id=info:pmid/25005681&rft_els_id=1_s2_0_S0142961214007248&rfr_iscdi=true |