Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux

We consider flow in a finite-length channel, one wall of which contains a membrane under longitudinal tension. The upstream flux and downstream pressure are prescribed and an external linear pressure distribution is applied to the membrane such that the system admits uniform Poiseuille flow as a ste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2013-05, Vol.723, p.706-733
Hauptverfasser: Xu, Feng, Billingham, John, Jensen, Oliver E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue
container_start_page 706
container_title Journal of fluid mechanics
container_volume 723
creator Xu, Feng
Billingham, John
Jensen, Oliver E.
description We consider flow in a finite-length channel, one wall of which contains a membrane under longitudinal tension. The upstream flux and downstream pressure are prescribed and an external linear pressure distribution is applied to the membrane such that the system admits uniform Poiseuille flow as a steady solution. The system is described using a one-dimensional model that accounts for viscous and inertial effects. A linear stability analysis reveals that the uniform state is unstable to static (or divergent) and oscillatory instabilities. Asymptotic analysis in the neighbourhood of a Takens–Bogdanov bifurcation point shows how, when the downstream rigid section of the channel is not substantially longer than the membrane, an oscillatory mode arises through an interaction between two static eigenmodes. Perturbations to the uniform state exhibit the dynamics of a weakly dissipative Hamiltonian system for which low-frequency self-excited oscillations are forced by the divergent instability of two nearby steady solutions, before ultimately growing to large amplitudes. Simulations show that the subsequent dynamics can involve slamming motion in which the membrane briefly comes into near-contact with the opposite rigid wall over short length scales.
doi_str_mv 10.1017/jfm.2013.97
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642302081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_97</cupid><sourcerecordid>1372627109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-106fba09e32bed441d83d48b2807ffcc4830c49074ab842d7ea6181404d616583</originalsourceid><addsrcrecordid>eNqF0V1rFDEUBuAgCq7VK__AgAiCzHpOks3HpbRahYIgej1kMidtlpnMmsy06783pYuICF4lJE_eJLyMvUTYIqB-tw_TlgOKrdWP2Aalsq1WcveYbQA4bxE5PGXPStlDRWD1hn29iLeUryl5aodc56mZi4_j6JY4p9LE1LgmjHSM_Uitv3Ep0VgX5rvmLi43TYhHGpr1UJZMbqob6_E5exLcWOjFaTxj3z9--Hb-qb36cvn5_P1V64XdLS2CCr0DS4L3NEiJgxGDND03oEPwXhoBXlrQ0vVG8kGTU2hQghwUqp0RZ-zNQ-4hzz9WKks3xeKpPj3RvJYOleQCOBj8PxWaK64RbKWv_qL7ec2pfqQqaXeWo-FVvX1QPs-lZArdIcfJ5Z8dQndfRVer6O6r6Kyu-vUp0xXvxpBd8rH8PsK14FIZWV17SnVTn-NwTX9c_o_cX-qZlmc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1349592182</pqid></control><display><type>article</type><title>Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux</title><source>Cambridge University Press Journals Complete</source><creator>Xu, Feng ; Billingham, John ; Jensen, Oliver E.</creator><creatorcontrib>Xu, Feng ; Billingham, John ; Jensen, Oliver E.</creatorcontrib><description>We consider flow in a finite-length channel, one wall of which contains a membrane under longitudinal tension. The upstream flux and downstream pressure are prescribed and an external linear pressure distribution is applied to the membrane such that the system admits uniform Poiseuille flow as a steady solution. The system is described using a one-dimensional model that accounts for viscous and inertial effects. A linear stability analysis reveals that the uniform state is unstable to static (or divergent) and oscillatory instabilities. Asymptotic analysis in the neighbourhood of a Takens–Bogdanov bifurcation point shows how, when the downstream rigid section of the channel is not substantially longer than the membrane, an oscillatory mode arises through an interaction between two static eigenmodes. Perturbations to the uniform state exhibit the dynamics of a weakly dissipative Hamiltonian system for which low-frequency self-excited oscillations are forced by the divergent instability of two nearby steady solutions, before ultimately growing to large amplitudes. Simulations show that the subsequent dynamics can involve slamming motion in which the membrane briefly comes into near-contact with the opposite rigid wall over short length scales.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.97</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Channel flow ; Channels ; Dynamical systems ; Dynamics ; Exact sciences and technology ; Flows in ducts, channels, nozzles, and conduits ; Fluid dynamics ; Flux ; Fundamental areas of phenomenology (including applications) ; Instability ; Mathematical models ; Membranes ; Oscillations ; Physics ; Pressure distribution ; Solid mechanics ; Stability analysis ; Structural and continuum mechanics ; Upstream ; Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><ispartof>Journal of fluid mechanics, 2013-05, Vol.723, p.706-733</ispartof><rights>2013 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-106fba09e32bed441d83d48b2807ffcc4830c49074ab842d7ea6181404d616583</citedby><cites>FETCH-LOGICAL-c395t-106fba09e32bed441d83d48b2807ffcc4830c49074ab842d7ea6181404d616583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013000979/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,27901,27902,55603</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27324684$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Billingham, John</creatorcontrib><creatorcontrib>Jensen, Oliver E.</creatorcontrib><title>Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>We consider flow in a finite-length channel, one wall of which contains a membrane under longitudinal tension. The upstream flux and downstream pressure are prescribed and an external linear pressure distribution is applied to the membrane such that the system admits uniform Poiseuille flow as a steady solution. The system is described using a one-dimensional model that accounts for viscous and inertial effects. A linear stability analysis reveals that the uniform state is unstable to static (or divergent) and oscillatory instabilities. Asymptotic analysis in the neighbourhood of a Takens–Bogdanov bifurcation point shows how, when the downstream rigid section of the channel is not substantially longer than the membrane, an oscillatory mode arises through an interaction between two static eigenmodes. Perturbations to the uniform state exhibit the dynamics of a weakly dissipative Hamiltonian system for which low-frequency self-excited oscillations are forced by the divergent instability of two nearby steady solutions, before ultimately growing to large amplitudes. Simulations show that the subsequent dynamics can involve slamming motion in which the membrane briefly comes into near-contact with the opposite rigid wall over short length scales.</description><subject>Channel flow</subject><subject>Channels</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Exact sciences and technology</subject><subject>Flows in ducts, channels, nozzles, and conduits</subject><subject>Fluid dynamics</subject><subject>Flux</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Instability</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Oscillations</subject><subject>Physics</subject><subject>Pressure distribution</subject><subject>Solid mechanics</subject><subject>Stability analysis</subject><subject>Structural and continuum mechanics</subject><subject>Upstream</subject><subject>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0V1rFDEUBuAgCq7VK__AgAiCzHpOks3HpbRahYIgej1kMidtlpnMmsy06783pYuICF4lJE_eJLyMvUTYIqB-tw_TlgOKrdWP2Aalsq1WcveYbQA4bxE5PGXPStlDRWD1hn29iLeUryl5aodc56mZi4_j6JY4p9LE1LgmjHSM_Uitv3Ep0VgX5rvmLi43TYhHGpr1UJZMbqob6_E5exLcWOjFaTxj3z9--Hb-qb36cvn5_P1V64XdLS2CCr0DS4L3NEiJgxGDND03oEPwXhoBXlrQ0vVG8kGTU2hQghwUqp0RZ-zNQ-4hzz9WKks3xeKpPj3RvJYOleQCOBj8PxWaK64RbKWv_qL7ec2pfqQqaXeWo-FVvX1QPs-lZArdIcfJ5Z8dQndfRVer6O6r6Kyu-vUp0xXvxpBd8rH8PsK14FIZWV17SnVTn-NwTX9c_o_cX-qZlmc</recordid><startdate>20130525</startdate><enddate>20130525</enddate><creator>Xu, Feng</creator><creator>Billingham, John</creator><creator>Jensen, Oliver E.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20130525</creationdate><title>Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux</title><author>Xu, Feng ; Billingham, John ; Jensen, Oliver E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-106fba09e32bed441d83d48b2807ffcc4830c49074ab842d7ea6181404d616583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Channel flow</topic><topic>Channels</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Exact sciences and technology</topic><topic>Flows in ducts, channels, nozzles, and conduits</topic><topic>Fluid dynamics</topic><topic>Flux</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Instability</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Oscillations</topic><topic>Physics</topic><topic>Pressure distribution</topic><topic>Solid mechanics</topic><topic>Stability analysis</topic><topic>Structural and continuum mechanics</topic><topic>Upstream</topic><topic>Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Billingham, John</creatorcontrib><creatorcontrib>Jensen, Oliver E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Feng</au><au>Billingham, John</au><au>Jensen, Oliver E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2013-05-25</date><risdate>2013</risdate><volume>723</volume><spage>706</spage><epage>733</epage><pages>706-733</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>We consider flow in a finite-length channel, one wall of which contains a membrane under longitudinal tension. The upstream flux and downstream pressure are prescribed and an external linear pressure distribution is applied to the membrane such that the system admits uniform Poiseuille flow as a steady solution. The system is described using a one-dimensional model that accounts for viscous and inertial effects. A linear stability analysis reveals that the uniform state is unstable to static (or divergent) and oscillatory instabilities. Asymptotic analysis in the neighbourhood of a Takens–Bogdanov bifurcation point shows how, when the downstream rigid section of the channel is not substantially longer than the membrane, an oscillatory mode arises through an interaction between two static eigenmodes. Perturbations to the uniform state exhibit the dynamics of a weakly dissipative Hamiltonian system for which low-frequency self-excited oscillations are forced by the divergent instability of two nearby steady solutions, before ultimately growing to large amplitudes. Simulations show that the subsequent dynamics can involve slamming motion in which the membrane briefly comes into near-contact with the opposite rigid wall over short length scales.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.97</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2013-05, Vol.723, p.706-733
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642302081
source Cambridge University Press Journals Complete
subjects Channel flow
Channels
Dynamical systems
Dynamics
Exact sciences and technology
Flows in ducts, channels, nozzles, and conduits
Fluid dynamics
Flux
Fundamental areas of phenomenology (including applications)
Instability
Mathematical models
Membranes
Oscillations
Physics
Pressure distribution
Solid mechanics
Stability analysis
Structural and continuum mechanics
Upstream
Vibration, mechanical wave, dynamic stability (aeroelasticity, vibration control...)
title Divergence-driven oscillations in a flexible-channel flow with fixed upstream flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A24%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Divergence-driven%20oscillations%20in%20a%20flexible-channel%20flow%20with%20fixed%20upstream%20flux&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Xu,%20Feng&rft.date=2013-05-25&rft.volume=723&rft.spage=706&rft.epage=733&rft.pages=706-733&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.97&rft_dat=%3Cproquest_cross%3E1372627109%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1349592182&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_97&rfr_iscdi=true