Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles

► Two-step, low temperature hydrothermal method. ► Deagglomeration and stabilization of 6nm nanoseeds via hydrothermal treatment. ► Stable dispersion of anatase TiO2 nanoparticles with a zeta potential of −51mV and content of 10wt.%. ► Attractive as coating solution for the deposition of different m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2013-05, Vol.223, p.135-144
Hauptverfasser: Souvereyns, B., Elen, K., De Dobbelaere, C., Kelchtermans, A., Peys, N., D’Haen, J., Mertens, M., Mullens, S., Van den Rul, H., Meynen, V., Cool, P., Hardy, A., Van Bael, M.K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 135
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 223
creator Souvereyns, B.
Elen, K.
De Dobbelaere, C.
Kelchtermans, A.
Peys, N.
D’Haen, J.
Mertens, M.
Mullens, S.
Van den Rul, H.
Meynen, V.
Cool, P.
Hardy, A.
Van Bael, M.K.
description ► Two-step, low temperature hydrothermal method. ► Deagglomeration and stabilization of 6nm nanoseeds via hydrothermal treatment. ► Stable dispersion of anatase TiO2 nanoparticles with a zeta potential of −51mV and content of 10wt.%. ► Attractive as coating solution for the deposition of different morphologies of TiO2. A low temperature method for the preparation of an aqueous dispersion of 10wt.% of TiO2 nanoparticles with prolonged stability is presented. This stable, aqueous dispersion is obtained by a two-step, hydrothermal synthesis method using a maximum temperature of 130°C. The hydrothermal treatment of pre-synthesized crystalline nanoparticles results in a colloidal dispersion with minimal particle agglomeration due to the combination of surface modification, pH adjustment and optimized hydrothermal conditions. The presented procedure can be regarded as an alternative and improved method for the dispersion of TiO2 pre-synthesized nanoparticles in an aqueous medium. The stability (sedimentation and particle agglomeration) of the dispersion is investigated by means of zeta potential measurements, evaluation of viscosity in function of time and interaction potential calculations. Transmission Electron Microscopy, X-ray Diffraction and Raman Spectroscopy are used to characterize the structural and chemical features of the TiO2 nanoparticles. The crystalline nanoparticles in dispersion have dimensions
doi_str_mv 10.1016/j.cej.2013.02.047
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642298632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894713002131</els_id><sourcerecordid>1642298632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b4a4ed6e763fb7fecfe6ee4d03a0264f054842731e3c87f8b343cc7ea5d0e6ce3</originalsourceid><addsrcrecordid>eNqF0D1PwzAQgOEIgUT5-AFMZGRJ8FfsREwIAUWq1IF2tlz7DK7SuPhSpP57XJUZprvhvRueorihpKaEyvt1bWFdM0J5TVhNhDopJrRVvOKMstO887ap2k6o8-ICcU0IkR3tJsViuncpjp-QNqYvcT_kFQOW0ZemtHGwMIzJjOBKM7gSR7PqoXQBt5AwxOHQLcKclYMZ4takMdge8Ko486ZHuP6dl8Xy5XnxNK1m89e3p8dZZUVHxmoljAAnQUnuV8qD9SABhCPcECaFJ41oBVOcAret8u2KC26tAtM4AtICvyzujn-3KX7tAEe9CWih780AcYeaSsFY10rO_k8byoVSmSmn9JjaFBETeL1NYWPSXlOiD9h6rTO2PmBrwnTGzje3xxtvojYfKaBevuegydCdbHiXi4djARnkO0DSaANkXxcS2FG7GP74_wM8KJFV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513477138</pqid></control><display><type>article</type><title>Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles</title><source>ScienceDirect</source><creator>Souvereyns, B. ; Elen, K. ; De Dobbelaere, C. ; Kelchtermans, A. ; Peys, N. ; D’Haen, J. ; Mertens, M. ; Mullens, S. ; Van den Rul, H. ; Meynen, V. ; Cool, P. ; Hardy, A. ; Van Bael, M.K.</creator><creatorcontrib>Souvereyns, B. ; Elen, K. ; De Dobbelaere, C. ; Kelchtermans, A. ; Peys, N. ; D’Haen, J. ; Mertens, M. ; Mullens, S. ; Van den Rul, H. ; Meynen, V. ; Cool, P. ; Hardy, A. ; Van Bael, M.K.</creatorcontrib><description>► Two-step, low temperature hydrothermal method. ► Deagglomeration and stabilization of 6nm nanoseeds via hydrothermal treatment. ► Stable dispersion of anatase TiO2 nanoparticles with a zeta potential of −51mV and content of 10wt.%. ► Attractive as coating solution for the deposition of different morphologies of TiO2. A low temperature method for the preparation of an aqueous dispersion of 10wt.% of TiO2 nanoparticles with prolonged stability is presented. This stable, aqueous dispersion is obtained by a two-step, hydrothermal synthesis method using a maximum temperature of 130°C. The hydrothermal treatment of pre-synthesized crystalline nanoparticles results in a colloidal dispersion with minimal particle agglomeration due to the combination of surface modification, pH adjustment and optimized hydrothermal conditions. The presented procedure can be regarded as an alternative and improved method for the dispersion of TiO2 pre-synthesized nanoparticles in an aqueous medium. The stability (sedimentation and particle agglomeration) of the dispersion is investigated by means of zeta potential measurements, evaluation of viscosity in function of time and interaction potential calculations. Transmission Electron Microscopy, X-ray Diffraction and Raman Spectroscopy are used to characterize the structural and chemical features of the TiO2 nanoparticles. The crystalline nanoparticles in dispersion have dimensions&lt;10nm and contain 80% anatase and 20% brookite, according to quantitative XRD analysis. Additionally, the hydrothermal treatment not only stabilized the particles but also increased the crystallinity of the particles in dispersion as a supplemental advantage. Experiments show that this dispersion can be used in combination with various deposition techniques to obtain films with different morphologies.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2013.02.047</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Agglomeration ; Anatase ; Aqueous dispersion ; chemical engineering ; Crystal structure ; Dispersions ; hot water treatment ; Hydrothermal dispersion ; Hydrothermal treatment ; Nanoparticles ; Raman spectroscopy ; Stability ; Synthesis ; temperature ; TiO2 ; Titanium dioxide ; transmission electron microscopy ; viscosity ; X-ray diffraction ; zeta potential</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2013-05, Vol.223, p.135-144</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b4a4ed6e763fb7fecfe6ee4d03a0264f054842731e3c87f8b343cc7ea5d0e6ce3</citedby><cites>FETCH-LOGICAL-c490t-b4a4ed6e763fb7fecfe6ee4d03a0264f054842731e3c87f8b343cc7ea5d0e6ce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cej.2013.02.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids></links><search><creatorcontrib>Souvereyns, B.</creatorcontrib><creatorcontrib>Elen, K.</creatorcontrib><creatorcontrib>De Dobbelaere, C.</creatorcontrib><creatorcontrib>Kelchtermans, A.</creatorcontrib><creatorcontrib>Peys, N.</creatorcontrib><creatorcontrib>D’Haen, J.</creatorcontrib><creatorcontrib>Mertens, M.</creatorcontrib><creatorcontrib>Mullens, S.</creatorcontrib><creatorcontrib>Van den Rul, H.</creatorcontrib><creatorcontrib>Meynen, V.</creatorcontrib><creatorcontrib>Cool, P.</creatorcontrib><creatorcontrib>Hardy, A.</creatorcontrib><creatorcontrib>Van Bael, M.K.</creatorcontrib><title>Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>► Two-step, low temperature hydrothermal method. ► Deagglomeration and stabilization of 6nm nanoseeds via hydrothermal treatment. ► Stable dispersion of anatase TiO2 nanoparticles with a zeta potential of −51mV and content of 10wt.%. ► Attractive as coating solution for the deposition of different morphologies of TiO2. A low temperature method for the preparation of an aqueous dispersion of 10wt.% of TiO2 nanoparticles with prolonged stability is presented. This stable, aqueous dispersion is obtained by a two-step, hydrothermal synthesis method using a maximum temperature of 130°C. The hydrothermal treatment of pre-synthesized crystalline nanoparticles results in a colloidal dispersion with minimal particle agglomeration due to the combination of surface modification, pH adjustment and optimized hydrothermal conditions. The presented procedure can be regarded as an alternative and improved method for the dispersion of TiO2 pre-synthesized nanoparticles in an aqueous medium. The stability (sedimentation and particle agglomeration) of the dispersion is investigated by means of zeta potential measurements, evaluation of viscosity in function of time and interaction potential calculations. Transmission Electron Microscopy, X-ray Diffraction and Raman Spectroscopy are used to characterize the structural and chemical features of the TiO2 nanoparticles. The crystalline nanoparticles in dispersion have dimensions&lt;10nm and contain 80% anatase and 20% brookite, according to quantitative XRD analysis. Additionally, the hydrothermal treatment not only stabilized the particles but also increased the crystallinity of the particles in dispersion as a supplemental advantage. Experiments show that this dispersion can be used in combination with various deposition techniques to obtain films with different morphologies.</description><subject>Agglomeration</subject><subject>Anatase</subject><subject>Aqueous dispersion</subject><subject>chemical engineering</subject><subject>Crystal structure</subject><subject>Dispersions</subject><subject>hot water treatment</subject><subject>Hydrothermal dispersion</subject><subject>Hydrothermal treatment</subject><subject>Nanoparticles</subject><subject>Raman spectroscopy</subject><subject>Stability</subject><subject>Synthesis</subject><subject>temperature</subject><subject>TiO2</subject><subject>Titanium dioxide</subject><subject>transmission electron microscopy</subject><subject>viscosity</subject><subject>X-ray diffraction</subject><subject>zeta potential</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0D1PwzAQgOEIgUT5-AFMZGRJ8FfsREwIAUWq1IF2tlz7DK7SuPhSpP57XJUZprvhvRueorihpKaEyvt1bWFdM0J5TVhNhDopJrRVvOKMstO887ap2k6o8-ICcU0IkR3tJsViuncpjp-QNqYvcT_kFQOW0ZemtHGwMIzJjOBKM7gSR7PqoXQBt5AwxOHQLcKclYMZ4takMdge8Ko486ZHuP6dl8Xy5XnxNK1m89e3p8dZZUVHxmoljAAnQUnuV8qD9SABhCPcECaFJ41oBVOcAret8u2KC26tAtM4AtICvyzujn-3KX7tAEe9CWih780AcYeaSsFY10rO_k8byoVSmSmn9JjaFBETeL1NYWPSXlOiD9h6rTO2PmBrwnTGzje3xxtvojYfKaBevuegydCdbHiXi4djARnkO0DSaANkXxcS2FG7GP74_wM8KJFV</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Souvereyns, B.</creator><creator>Elen, K.</creator><creator>De Dobbelaere, C.</creator><creator>Kelchtermans, A.</creator><creator>Peys, N.</creator><creator>D’Haen, J.</creator><creator>Mertens, M.</creator><creator>Mullens, S.</creator><creator>Van den Rul, H.</creator><creator>Meynen, V.</creator><creator>Cool, P.</creator><creator>Hardy, A.</creator><creator>Van Bael, M.K.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles</title><author>Souvereyns, B. ; Elen, K. ; De Dobbelaere, C. ; Kelchtermans, A. ; Peys, N. ; D’Haen, J. ; Mertens, M. ; Mullens, S. ; Van den Rul, H. ; Meynen, V. ; Cool, P. ; Hardy, A. ; Van Bael, M.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b4a4ed6e763fb7fecfe6ee4d03a0264f054842731e3c87f8b343cc7ea5d0e6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Agglomeration</topic><topic>Anatase</topic><topic>Aqueous dispersion</topic><topic>chemical engineering</topic><topic>Crystal structure</topic><topic>Dispersions</topic><topic>hot water treatment</topic><topic>Hydrothermal dispersion</topic><topic>Hydrothermal treatment</topic><topic>Nanoparticles</topic><topic>Raman spectroscopy</topic><topic>Stability</topic><topic>Synthesis</topic><topic>temperature</topic><topic>TiO2</topic><topic>Titanium dioxide</topic><topic>transmission electron microscopy</topic><topic>viscosity</topic><topic>X-ray diffraction</topic><topic>zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Souvereyns, B.</creatorcontrib><creatorcontrib>Elen, K.</creatorcontrib><creatorcontrib>De Dobbelaere, C.</creatorcontrib><creatorcontrib>Kelchtermans, A.</creatorcontrib><creatorcontrib>Peys, N.</creatorcontrib><creatorcontrib>D’Haen, J.</creatorcontrib><creatorcontrib>Mertens, M.</creatorcontrib><creatorcontrib>Mullens, S.</creatorcontrib><creatorcontrib>Van den Rul, H.</creatorcontrib><creatorcontrib>Meynen, V.</creatorcontrib><creatorcontrib>Cool, P.</creatorcontrib><creatorcontrib>Hardy, A.</creatorcontrib><creatorcontrib>Van Bael, M.K.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Souvereyns, B.</au><au>Elen, K.</au><au>De Dobbelaere, C.</au><au>Kelchtermans, A.</au><au>Peys, N.</au><au>D’Haen, J.</au><au>Mertens, M.</au><au>Mullens, S.</au><au>Van den Rul, H.</au><au>Meynen, V.</au><au>Cool, P.</au><au>Hardy, A.</au><au>Van Bael, M.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>223</volume><spage>135</spage><epage>144</epage><pages>135-144</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>► Two-step, low temperature hydrothermal method. ► Deagglomeration and stabilization of 6nm nanoseeds via hydrothermal treatment. ► Stable dispersion of anatase TiO2 nanoparticles with a zeta potential of −51mV and content of 10wt.%. ► Attractive as coating solution for the deposition of different morphologies of TiO2. A low temperature method for the preparation of an aqueous dispersion of 10wt.% of TiO2 nanoparticles with prolonged stability is presented. This stable, aqueous dispersion is obtained by a two-step, hydrothermal synthesis method using a maximum temperature of 130°C. The hydrothermal treatment of pre-synthesized crystalline nanoparticles results in a colloidal dispersion with minimal particle agglomeration due to the combination of surface modification, pH adjustment and optimized hydrothermal conditions. The presented procedure can be regarded as an alternative and improved method for the dispersion of TiO2 pre-synthesized nanoparticles in an aqueous medium. The stability (sedimentation and particle agglomeration) of the dispersion is investigated by means of zeta potential measurements, evaluation of viscosity in function of time and interaction potential calculations. Transmission Electron Microscopy, X-ray Diffraction and Raman Spectroscopy are used to characterize the structural and chemical features of the TiO2 nanoparticles. The crystalline nanoparticles in dispersion have dimensions&lt;10nm and contain 80% anatase and 20% brookite, according to quantitative XRD analysis. Additionally, the hydrothermal treatment not only stabilized the particles but also increased the crystallinity of the particles in dispersion as a supplemental advantage. Experiments show that this dispersion can be used in combination with various deposition techniques to obtain films with different morphologies.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2013.02.047</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2013-05, Vol.223, p.135-144
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_1642298632
source ScienceDirect
subjects Agglomeration
Anatase
Aqueous dispersion
chemical engineering
Crystal structure
Dispersions
hot water treatment
Hydrothermal dispersion
Hydrothermal treatment
Nanoparticles
Raman spectroscopy
Stability
Synthesis
temperature
TiO2
Titanium dioxide
transmission electron microscopy
viscosity
X-ray diffraction
zeta potential
title Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A00%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrothermal%20synthesis%20of%20a%20concentrated%20and%20stable%20dispersion%20of%20TiO2%20nanoparticles&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Souvereyns,%20B.&rft.date=2013-05-01&rft.volume=223&rft.spage=135&rft.epage=144&rft.pages=135-144&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2013.02.047&rft_dat=%3Cproquest_cross%3E1642298632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513477138&rft_id=info:pmid/&rft_els_id=S1385894713002131&rfr_iscdi=true