Surface potential on grain boundaries and intragrains of highly efficient Cu sub(2)ZnSn(S,Se) sub(4) thin-films grown by two-step sputtering process

Cu sub(2)ZnSn(S,Se) sub(4) (CZTSSe) thin-film solar cells are prepared by stacking sputtering of precursors and annealing at Se atmosphere. We achieved the highest conversion efficiency of a CZTSSe thin-film solar cell with 8.06%. Local electrical properties of the CZTSSe films were investigated by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy materials and solar cells 2014-08, Vol.127, p.129-135
Hauptverfasser: Kim, Gee Yeong, Jeong, Ah Reum, Kim, Ju Ri, Jo, William, Son, Dae-Ho, Kim, Dae-Hwan, Kang, Jin-Kyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135
container_issue
container_start_page 129
container_title Solar energy materials and solar cells
container_volume 127
creator Kim, Gee Yeong
Jeong, Ah Reum
Kim, Ju Ri
Jo, William
Son, Dae-Ho
Kim, Dae-Hwan
Kang, Jin-Kyu
description Cu sub(2)ZnSn(S,Se) sub(4) (CZTSSe) thin-film solar cells are prepared by stacking sputtering of precursors and annealing at Se atmosphere. We achieved the highest conversion efficiency of a CZTSSe thin-film solar cell with 8.06%. Local electrical properties of the CZTSSe films were investigated by Kelvin probe force microscopy. We studied samples which show conversion efficiencies between 3.17% and 8.06%. The CZTSSe thin-film with the highest efficiency exhibits predominantly downward potential bending at grain boundaries (GBs) and upward potential bending at intragrains (IGs). On the other hand, the film with the lowest efficiency shows the opposite behaviors that downward potential bending at GBs and upward potential bending in many regions of IGs. The downward potential bending allows minority carrier collection and reduces recombination at GBs, consequently, enhance current in the solar cell devices. However, some of the GBs possesses deep-level traps so they behave as a hurdle for charge transport which can be compensated with the carrier motion in the IGs. The results suggest that the potential variations on the GBs and IGs are significantly linked to the carrier transport and device characteristics in the solar cells.
doi_str_mv 10.1016/j.solmat.2014.04.019
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642298500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1566847206</sourcerecordid><originalsourceid>FETCH-LOGICAL-p660-44ca95acea5ead9ff08f8f0d0ccc7b939ab756899f15e81f3c80d2df6b228a583</originalsourceid><addsrcrecordid>eNqFjs1qwzAQhHVooWnaN-hBxwRqdyXLsnQsoX8Q6ME59RJkWUoUHMm1ZELeow9c0_ZeWFiYmf1mEbojkBMg_OGQx9AdVcopEJbDNEReoBlIWmVAmbhC1zEeAIDygs3QVz0OVmmD-5CMT051OHi8G5TzuAmjb9XgTMTKt9j5NKgfJ-Jg8d7t9t0ZG2uddtMpXo04js2CLj987Rf1fW2WPwJb4rR3PrOuO8YJHU4T-ozTKWQxmR7HfkzJDM7vcD8EbWK8QZdWddHc_u052jw_bVav2fr95W31uM56ziFjTCtZTr-r0qhWWgvCCgstaK2rRhZSNVXJhZSWlEYQW2gBLW0tbygVqhTFHC1-sVPt52hi2h5d1KbrlDdhjFvCGaVSlAD_R0vOBaso8OIb-Ht55w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1566847206</pqid></control><display><type>article</type><title>Surface potential on grain boundaries and intragrains of highly efficient Cu sub(2)ZnSn(S,Se) sub(4) thin-films grown by two-step sputtering process</title><source>Elsevier ScienceDirect Journals</source><creator>Kim, Gee Yeong ; Jeong, Ah Reum ; Kim, Ju Ri ; Jo, William ; Son, Dae-Ho ; Kim, Dae-Hwan ; Kang, Jin-Kyu</creator><creatorcontrib>Kim, Gee Yeong ; Jeong, Ah Reum ; Kim, Ju Ri ; Jo, William ; Son, Dae-Ho ; Kim, Dae-Hwan ; Kang, Jin-Kyu</creatorcontrib><description>Cu sub(2)ZnSn(S,Se) sub(4) (CZTSSe) thin-film solar cells are prepared by stacking sputtering of precursors and annealing at Se atmosphere. We achieved the highest conversion efficiency of a CZTSSe thin-film solar cell with 8.06%. Local electrical properties of the CZTSSe films were investigated by Kelvin probe force microscopy. We studied samples which show conversion efficiencies between 3.17% and 8.06%. The CZTSSe thin-film with the highest efficiency exhibits predominantly downward potential bending at grain boundaries (GBs) and upward potential bending at intragrains (IGs). On the other hand, the film with the lowest efficiency shows the opposite behaviors that downward potential bending at GBs and upward potential bending in many regions of IGs. The downward potential bending allows minority carrier collection and reduces recombination at GBs, consequently, enhance current in the solar cell devices. However, some of the GBs possesses deep-level traps so they behave as a hurdle for charge transport which can be compensated with the carrier motion in the IGs. The results suggest that the potential variations on the GBs and IGs are significantly linked to the carrier transport and device characteristics in the solar cells.</description><identifier>ISSN: 0927-0248</identifier><identifier>DOI: 10.1016/j.solmat.2014.04.019</identifier><language>eng</language><subject>Bending ; Conversion ; Devices ; Grain boundaries ; Photovoltaic cells ; Solar cells ; Sputtering ; Stacking ; Thin films</subject><ispartof>Solar energy materials and solar cells, 2014-08, Vol.127, p.129-135</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Kim, Gee Yeong</creatorcontrib><creatorcontrib>Jeong, Ah Reum</creatorcontrib><creatorcontrib>Kim, Ju Ri</creatorcontrib><creatorcontrib>Jo, William</creatorcontrib><creatorcontrib>Son, Dae-Ho</creatorcontrib><creatorcontrib>Kim, Dae-Hwan</creatorcontrib><creatorcontrib>Kang, Jin-Kyu</creatorcontrib><title>Surface potential on grain boundaries and intragrains of highly efficient Cu sub(2)ZnSn(S,Se) sub(4) thin-films grown by two-step sputtering process</title><title>Solar energy materials and solar cells</title><description>Cu sub(2)ZnSn(S,Se) sub(4) (CZTSSe) thin-film solar cells are prepared by stacking sputtering of precursors and annealing at Se atmosphere. We achieved the highest conversion efficiency of a CZTSSe thin-film solar cell with 8.06%. Local electrical properties of the CZTSSe films were investigated by Kelvin probe force microscopy. We studied samples which show conversion efficiencies between 3.17% and 8.06%. The CZTSSe thin-film with the highest efficiency exhibits predominantly downward potential bending at grain boundaries (GBs) and upward potential bending at intragrains (IGs). On the other hand, the film with the lowest efficiency shows the opposite behaviors that downward potential bending at GBs and upward potential bending in many regions of IGs. The downward potential bending allows minority carrier collection and reduces recombination at GBs, consequently, enhance current in the solar cell devices. However, some of the GBs possesses deep-level traps so they behave as a hurdle for charge transport which can be compensated with the carrier motion in the IGs. The results suggest that the potential variations on the GBs and IGs are significantly linked to the carrier transport and device characteristics in the solar cells.</description><subject>Bending</subject><subject>Conversion</subject><subject>Devices</subject><subject>Grain boundaries</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Sputtering</subject><subject>Stacking</subject><subject>Thin films</subject><issn>0927-0248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFjs1qwzAQhHVooWnaN-hBxwRqdyXLsnQsoX8Q6ME59RJkWUoUHMm1ZELeow9c0_ZeWFiYmf1mEbojkBMg_OGQx9AdVcopEJbDNEReoBlIWmVAmbhC1zEeAIDygs3QVz0OVmmD-5CMT051OHi8G5TzuAmjb9XgTMTKt9j5NKgfJ-Jg8d7t9t0ZG2uddtMpXo04js2CLj987Rf1fW2WPwJb4rR3PrOuO8YJHU4T-ozTKWQxmR7HfkzJDM7vcD8EbWK8QZdWddHc_u052jw_bVav2fr95W31uM56ziFjTCtZTr-r0qhWWgvCCgstaK2rRhZSNVXJhZSWlEYQW2gBLW0tbygVqhTFHC1-sVPt52hi2h5d1KbrlDdhjFvCGaVSlAD_R0vOBaso8OIb-Ht55w</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Kim, Gee Yeong</creator><creator>Jeong, Ah Reum</creator><creator>Kim, Ju Ri</creator><creator>Jo, William</creator><creator>Son, Dae-Ho</creator><creator>Kim, Dae-Hwan</creator><creator>Kang, Jin-Kyu</creator><scope>7TG</scope><scope>KL.</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Surface potential on grain boundaries and intragrains of highly efficient Cu sub(2)ZnSn(S,Se) sub(4) thin-films grown by two-step sputtering process</title><author>Kim, Gee Yeong ; Jeong, Ah Reum ; Kim, Ju Ri ; Jo, William ; Son, Dae-Ho ; Kim, Dae-Hwan ; Kang, Jin-Kyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p660-44ca95acea5ead9ff08f8f0d0ccc7b939ab756899f15e81f3c80d2df6b228a583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bending</topic><topic>Conversion</topic><topic>Devices</topic><topic>Grain boundaries</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Sputtering</topic><topic>Stacking</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Gee Yeong</creatorcontrib><creatorcontrib>Jeong, Ah Reum</creatorcontrib><creatorcontrib>Kim, Ju Ri</creatorcontrib><creatorcontrib>Jo, William</creatorcontrib><creatorcontrib>Son, Dae-Ho</creatorcontrib><creatorcontrib>Kim, Dae-Hwan</creatorcontrib><creatorcontrib>Kang, Jin-Kyu</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Gee Yeong</au><au>Jeong, Ah Reum</au><au>Kim, Ju Ri</au><au>Jo, William</au><au>Son, Dae-Ho</au><au>Kim, Dae-Hwan</au><au>Kang, Jin-Kyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface potential on grain boundaries and intragrains of highly efficient Cu sub(2)ZnSn(S,Se) sub(4) thin-films grown by two-step sputtering process</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>127</volume><spage>129</spage><epage>135</epage><pages>129-135</pages><issn>0927-0248</issn><abstract>Cu sub(2)ZnSn(S,Se) sub(4) (CZTSSe) thin-film solar cells are prepared by stacking sputtering of precursors and annealing at Se atmosphere. We achieved the highest conversion efficiency of a CZTSSe thin-film solar cell with 8.06%. Local electrical properties of the CZTSSe films were investigated by Kelvin probe force microscopy. We studied samples which show conversion efficiencies between 3.17% and 8.06%. The CZTSSe thin-film with the highest efficiency exhibits predominantly downward potential bending at grain boundaries (GBs) and upward potential bending at intragrains (IGs). On the other hand, the film with the lowest efficiency shows the opposite behaviors that downward potential bending at GBs and upward potential bending in many regions of IGs. The downward potential bending allows minority carrier collection and reduces recombination at GBs, consequently, enhance current in the solar cell devices. However, some of the GBs possesses deep-level traps so they behave as a hurdle for charge transport which can be compensated with the carrier motion in the IGs. The results suggest that the potential variations on the GBs and IGs are significantly linked to the carrier transport and device characteristics in the solar cells.</abstract><doi>10.1016/j.solmat.2014.04.019</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2014-08, Vol.127, p.129-135
issn 0927-0248
language eng
recordid cdi_proquest_miscellaneous_1642298500
source Elsevier ScienceDirect Journals
subjects Bending
Conversion
Devices
Grain boundaries
Photovoltaic cells
Solar cells
Sputtering
Stacking
Thin films
title Surface potential on grain boundaries and intragrains of highly efficient Cu sub(2)ZnSn(S,Se) sub(4) thin-films grown by two-step sputtering process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A08%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20potential%20on%20grain%20boundaries%20and%20intragrains%20of%20highly%20efficient%20Cu%20sub(2)ZnSn(S,Se)%20sub(4)%20thin-films%20grown%20by%20two-step%20sputtering%20process&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Kim,%20Gee%20Yeong&rft.date=2014-08-01&rft.volume=127&rft.spage=129&rft.epage=135&rft.pages=129-135&rft.issn=0927-0248&rft_id=info:doi/10.1016/j.solmat.2014.04.019&rft_dat=%3Cproquest%3E1566847206%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1566847206&rft_id=info:pmid/&rfr_iscdi=true