On the radial evolution of κ distributions of pickup protons in the supersonic solar wind

It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2014-10, Vol.119 (10), p.7998-8005
Hauptverfasser: Fahr, Hans-Jörg, Fichtner, Horst, Scherer, Klaus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8005
container_issue 10
container_start_page 7998
container_title Journal of geophysical research. Space physics
container_volume 119
creator Fahr, Hans-Jörg
Fichtner, Horst
Scherer, Klaus
description It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model. Key Points Evolution of kappa distributionsPickup ion transportVelocity diffusion
doi_str_mv 10.1002/2014JA020431
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642297010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635018582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhSMEEhV0xwG8ZEFh_BPHWZYKCqVqJQQCsbEcxxGmaRLshNKrcQjOREoAsULMZkZP3xvNvCA4wHCMAcgJAcwmQyDAKN4KegTzeBAzINvfMxWwG_S9f4K2RCvhsBc8zAtUPxrkVGpVjsxLmTe1LQtUZuj9DaXW184mn5LfaJXVi6ZClSvrjWI7t28q43xZWI18mSuHVrZI94OdTOXe9L_6XnB7fnYzuhhM5-PL0XA60IzgzV0YEqxilURaZUZQxblmIU84g8gowCmHJMnSNIkNM3GqkzSLYiEIGI25EHQvOOz2tkc9N8bXcmm9NnmuClM2XmLOCIkjwPAPlIaARShIix51qHal985ksnJ2qdxaYpCbwOXvwFucdvjK5mb9Jysn4-thiCmLW9egc7Uxm9cfl3ILySMahfJuNpZXk_bb8HQm7-kH4l6RbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635018582</pqid></control><display><type>article</type><title>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Fahr, Hans-Jörg ; Fichtner, Horst ; Scherer, Klaus</creator><creatorcontrib>Fahr, Hans-Jörg ; Fichtner, Horst ; Scherer, Klaus</creatorcontrib><description>It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model. Key Points Evolution of kappa distributionsPickup ion transportVelocity diffusion</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2014JA020431</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Asymptotic properties ; Differential equations ; Diffusion ; Evolution ; Heliosphere ; kappa distributions ; Mathematical models ; pickup ions ; Solar wind ; Transport equations</subject><ispartof>Journal of geophysical research. Space physics, 2014-10, Vol.119 (10), p.7998-8005</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</citedby><cites>FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JA020431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JA020431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Fahr, Hans-Jörg</creatorcontrib><creatorcontrib>Fichtner, Horst</creatorcontrib><creatorcontrib>Scherer, Klaus</creatorcontrib><title>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model. Key Points Evolution of kappa distributionsPickup ion transportVelocity diffusion</description><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Evolution</subject><subject>Heliosphere</subject><subject>kappa distributions</subject><subject>Mathematical models</subject><subject>pickup ions</subject><subject>Solar wind</subject><subject>Transport equations</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhSMEEhV0xwG8ZEFh_BPHWZYKCqVqJQQCsbEcxxGmaRLshNKrcQjOREoAsULMZkZP3xvNvCA4wHCMAcgJAcwmQyDAKN4KegTzeBAzINvfMxWwG_S9f4K2RCvhsBc8zAtUPxrkVGpVjsxLmTe1LQtUZuj9DaXW184mn5LfaJXVi6ZClSvrjWI7t28q43xZWI18mSuHVrZI94OdTOXe9L_6XnB7fnYzuhhM5-PL0XA60IzgzV0YEqxilURaZUZQxblmIU84g8gowCmHJMnSNIkNM3GqkzSLYiEIGI25EHQvOOz2tkc9N8bXcmm9NnmuClM2XmLOCIkjwPAPlIaARShIix51qHal985ksnJ2qdxaYpCbwOXvwFucdvjK5mb9Jysn4-thiCmLW9egc7Uxm9cfl3ILySMahfJuNpZXk_bb8HQm7-kH4l6RbQ</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Fahr, Hans-Jörg</creator><creator>Fichtner, Horst</creator><creator>Scherer, Klaus</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201410</creationdate><title>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</title><author>Fahr, Hans-Jörg ; Fichtner, Horst ; Scherer, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Evolution</topic><topic>Heliosphere</topic><topic>kappa distributions</topic><topic>Mathematical models</topic><topic>pickup ions</topic><topic>Solar wind</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahr, Hans-Jörg</creatorcontrib><creatorcontrib>Fichtner, Horst</creatorcontrib><creatorcontrib>Scherer, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahr, Hans-Jörg</au><au>Fichtner, Horst</au><au>Scherer, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2014-10</date><risdate>2014</risdate><volume>119</volume><issue>10</issue><spage>7998</spage><epage>8005</epage><pages>7998-8005</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model. Key Points Evolution of kappa distributionsPickup ion transportVelocity diffusion</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JA020431</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2014-10, Vol.119 (10), p.7998-8005
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_miscellaneous_1642297010
source Wiley Free Content; Wiley Online Library All Journals
subjects Asymptotic properties
Differential equations
Diffusion
Evolution
Heliosphere
kappa distributions
Mathematical models
pickup ions
Solar wind
Transport equations
title On the radial evolution of κ distributions of pickup protons in the supersonic solar wind
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20radial%20evolution%20of%20%CE%BA%20distributions%20of%20pickup%20protons%20in%20the%20supersonic%20solar%20wind&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Fahr,%20Hans-J%C3%B6rg&rft.date=2014-10&rft.volume=119&rft.issue=10&rft.spage=7998&rft.epage=8005&rft.pages=7998-8005&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2014JA020431&rft_dat=%3Cproquest_cross%3E1635018582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635018582&rft_id=info:pmid/&rfr_iscdi=true