On the radial evolution of κ distributions of pickup protons in the supersonic solar wind
It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions...
Gespeichert in:
Veröffentlicht in: | Journal of geophysical research. Space physics 2014-10, Vol.119 (10), p.7998-8005 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8005 |
---|---|
container_issue | 10 |
container_start_page | 7998 |
container_title | Journal of geophysical research. Space physics |
container_volume | 119 |
creator | Fahr, Hans-Jörg Fichtner, Horst Scherer, Klaus |
description | It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model.
Key Points
Evolution of kappa distributionsPickup ion transportVelocity diffusion |
doi_str_mv | 10.1002/2014JA020431 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642297010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1635018582</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</originalsourceid><addsrcrecordid>eNqNkE1OwzAQhSMEEhV0xwG8ZEFh_BPHWZYKCqVqJQQCsbEcxxGmaRLshNKrcQjOREoAsULMZkZP3xvNvCA4wHCMAcgJAcwmQyDAKN4KegTzeBAzINvfMxWwG_S9f4K2RCvhsBc8zAtUPxrkVGpVjsxLmTe1LQtUZuj9DaXW184mn5LfaJXVi6ZClSvrjWI7t28q43xZWI18mSuHVrZI94OdTOXe9L_6XnB7fnYzuhhM5-PL0XA60IzgzV0YEqxilURaZUZQxblmIU84g8gowCmHJMnSNIkNM3GqkzSLYiEIGI25EHQvOOz2tkc9N8bXcmm9NnmuClM2XmLOCIkjwPAPlIaARShIix51qHal985ksnJ2qdxaYpCbwOXvwFucdvjK5mb9Jysn4-thiCmLW9egc7Uxm9cfl3ILySMahfJuNpZXk_bb8HQm7-kH4l6RbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635018582</pqid></control><display><type>article</type><title>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><creator>Fahr, Hans-Jörg ; Fichtner, Horst ; Scherer, Klaus</creator><creatorcontrib>Fahr, Hans-Jörg ; Fichtner, Horst ; Scherer, Klaus</creatorcontrib><description>It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model.
Key Points
Evolution of kappa distributionsPickup ion transportVelocity diffusion</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2014JA020431</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Asymptotic properties ; Differential equations ; Diffusion ; Evolution ; Heliosphere ; kappa distributions ; Mathematical models ; pickup ions ; Solar wind ; Transport equations</subject><ispartof>Journal of geophysical research. Space physics, 2014-10, Vol.119 (10), p.7998-8005</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</citedby><cites>FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JA020431$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JA020431$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids></links><search><creatorcontrib>Fahr, Hans-Jörg</creatorcontrib><creatorcontrib>Fichtner, Horst</creatorcontrib><creatorcontrib>Scherer, Klaus</creatorcontrib><title>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</title><title>Journal of geophysical research. Space physics</title><addtitle>J. Geophys. Res. Space Physics</addtitle><description>It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model.
Key Points
Evolution of kappa distributionsPickup ion transportVelocity diffusion</description><subject>Asymptotic properties</subject><subject>Differential equations</subject><subject>Diffusion</subject><subject>Evolution</subject><subject>Heliosphere</subject><subject>kappa distributions</subject><subject>Mathematical models</subject><subject>pickup ions</subject><subject>Solar wind</subject><subject>Transport equations</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1OwzAQhSMEEhV0xwG8ZEFh_BPHWZYKCqVqJQQCsbEcxxGmaRLshNKrcQjOREoAsULMZkZP3xvNvCA4wHCMAcgJAcwmQyDAKN4KegTzeBAzINvfMxWwG_S9f4K2RCvhsBc8zAtUPxrkVGpVjsxLmTe1LQtUZuj9DaXW184mn5LfaJXVi6ZClSvrjWI7t28q43xZWI18mSuHVrZI94OdTOXe9L_6XnB7fnYzuhhM5-PL0XA60IzgzV0YEqxilURaZUZQxblmIU84g8gowCmHJMnSNIkNM3GqkzSLYiEIGI25EHQvOOz2tkc9N8bXcmm9NnmuClM2XmLOCIkjwPAPlIaARShIix51qHal985ksnJ2qdxaYpCbwOXvwFucdvjK5mb9Jysn4-thiCmLW9egc7Uxm9cfl3ILySMahfJuNpZXk_bb8HQm7-kH4l6RbQ</recordid><startdate>201410</startdate><enddate>201410</enddate><creator>Fahr, Hans-Jörg</creator><creator>Fichtner, Horst</creator><creator>Scherer, Klaus</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201410</creationdate><title>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</title><author>Fahr, Hans-Jörg ; Fichtner, Horst ; Scherer, Klaus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4219-9310b1a9ab7cafe83a66c456b6407ea01d60bbfddb9e4e9dcbdf798820ec16883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Asymptotic properties</topic><topic>Differential equations</topic><topic>Diffusion</topic><topic>Evolution</topic><topic>Heliosphere</topic><topic>kappa distributions</topic><topic>Mathematical models</topic><topic>pickup ions</topic><topic>Solar wind</topic><topic>Transport equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fahr, Hans-Jörg</creatorcontrib><creatorcontrib>Fichtner, Horst</creatorcontrib><creatorcontrib>Scherer, Klaus</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fahr, Hans-Jörg</au><au>Fichtner, Horst</au><au>Scherer, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the radial evolution of κ distributions of pickup protons in the supersonic solar wind</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><addtitle>J. Geophys. Res. Space Physics</addtitle><date>2014-10</date><risdate>2014</risdate><volume>119</volume><issue>10</issue><spage>7998</spage><epage>8005</epage><pages>7998-8005</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>It is well known that (pickup) ions in the inner heliosphere do not maintain Maxwellian distributions but tend to nonequilibrium distributions with extended suprathermal tails. Such states have been classified as quasi‐equilibria which in many cases can well be described by so‐called κ distributions. With the present study we start out from a phase space transport equation for pickup ions in the inner heliosphere that adequately describes the most important processes such as injection, convection, cooling, and diffusion in velocity space. Assuming that the underlying distribution functions are κ distributions, we proceed from this transport equation to a second‐order moment, i.e., pressure equation which represents an ordinary differential equation for the κ parameter as function of heliocentric distance. This strategy allows one to describe the transition from an initial Vasyliunas‐Siscoe distribution to κ distributions with gradually more pronounced suprathermal tails. While the velocity dependence of the velocity diffusion coefficient determines the systematic reduction of the parameter κ, the latter always has the (formal) asymptotic value κ∞=3/2. This translates into values of 1.5≤κTS≤2.2 in the upstream region of the (upwind) solar wind termination shock that defines the outer validity range of the model.
Key Points
Evolution of kappa distributionsPickup ion transportVelocity diffusion</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JA020431</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2014-10, Vol.119 (10), p.7998-8005 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642297010 |
source | Wiley Free Content; Wiley Online Library All Journals |
subjects | Asymptotic properties Differential equations Diffusion Evolution Heliosphere kappa distributions Mathematical models pickup ions Solar wind Transport equations |
title | On the radial evolution of κ distributions of pickup protons in the supersonic solar wind |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A34%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20radial%20evolution%20of%20%CE%BA%20distributions%20of%20pickup%20protons%20in%20the%20supersonic%20solar%20wind&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Fahr,%20Hans-J%C3%B6rg&rft.date=2014-10&rft.volume=119&rft.issue=10&rft.spage=7998&rft.epage=8005&rft.pages=7998-8005&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2014JA020431&rft_dat=%3Cproquest_cross%3E1635018582%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635018582&rft_id=info:pmid/&rfr_iscdi=true |