Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle

Beneath mid‐ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid‐ocean ridge lavas in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2012-05, Vol.13 (5), p.np-n/a
Hauptverfasser: Weatherley, S. M., Katz, R. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page np
container_title Geochemistry, geophysics, geosystems : G3
container_volume 13
creator Weatherley, S. M.
Katz, R. F.
description Beneath mid‐ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid‐ocean ridge lavas indicates that the mantle is chemically heterogeneous, but the consequences of this heterogeneity for reactive porous flow remain unclear. Using numerical models of coupled magma/mantle dynamics, we investigate the relationships between mantle heterogeneity, melting, and magmatic channelization. The models are based on conservation mass, momentum, energy, and composition in a system with two phases and two thermodynamic components in local thermodynamic equilibrium. One of these components is more fusible than the other. In this context, we find that heterogeneities enriched in the more fusible component can nucleate magmatic channels. To understand this result we consider an expression for the melting rate derived from the conservation principles. This expression quantifies the relationship of decompression, reactive flow, and thermal diffusion to the melting rate. With it, we assess their relative importance in the ambient mantle, channels, and enriched heterogeneities. In our models, heat diffuses into fertile channels and powers melting, in combination with reactive flow. These results suggest that thermal diffusion influences the dynamics of magmatic channelization. Key Points Channelized magmatic flow may be a consequence of mantle heterogeneity Conservation of energy is an important ingredient of models of magma dynamics Thermal diffusion and reactive flow power melting within channels
doi_str_mv 10.1029/2011GC003989
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642292877</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524409751</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4713-f55069261586d77c39ede90e78f2aa40cc7c1eeaedaceb92717dff23a4e87243</originalsourceid><addsrcrecordid>eNqFkcFOwzAMhisEEjC48QCVuHBYIUmTujnCGAUx4DAkJC5RSN2Rkbaj6TTG09MxhBAHkA-25M-_bf1BcEDJMSVMnjBCaTYgJJap3Ah2qGAiYoTB5o96O9j1fkoI5UKkO8H4Bl1rq0moqzw0z7qq0Nl3zMNST0rdWhMWrl6EtuqaWFqjnVuGz9hiU0-wwnru--F8tkDnViKlrlqHe8FWoZ3H_a_cC-4vhveDy2h0l10NTkeR5kDjqBCCJJIlVKRJDmBiiTlKgpAWTGtOjAFDETXm2uCTZEAhLwoWa44pMB73gqO17KypX-foW1Vab7pL9OddiiacMclSgP9RwTgnEgTt0MNf6LSeN1X3h6KQEBonXXRUf02Zpva-wULNGlvqZqkoUSsv1E8vOpyt8YV1uPyTVVmWDRmF1Y5oPWR9i2_fQ7p5UQnEINTDbaauz_j4HEaZeow_ADAImPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760136363</pqid></control><display><type>article</type><title>Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle</title><source>Wiley Online Library (Open Access Collection)</source><creator>Weatherley, S. M. ; Katz, R. F.</creator><creatorcontrib>Weatherley, S. M. ; Katz, R. F.</creatorcontrib><description>Beneath mid‐ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid‐ocean ridge lavas indicates that the mantle is chemically heterogeneous, but the consequences of this heterogeneity for reactive porous flow remain unclear. Using numerical models of coupled magma/mantle dynamics, we investigate the relationships between mantle heterogeneity, melting, and magmatic channelization. The models are based on conservation mass, momentum, energy, and composition in a system with two phases and two thermodynamic components in local thermodynamic equilibrium. One of these components is more fusible than the other. In this context, we find that heterogeneities enriched in the more fusible component can nucleate magmatic channels. To understand this result we consider an expression for the melting rate derived from the conservation principles. This expression quantifies the relationship of decompression, reactive flow, and thermal diffusion to the melting rate. With it, we assess their relative importance in the ambient mantle, channels, and enriched heterogeneities. In our models, heat diffuses into fertile channels and powers melting, in combination with reactive flow. These results suggest that thermal diffusion influences the dynamics of magmatic channelization. Key Points Channelized magmatic flow may be a consequence of mantle heterogeneity Conservation of energy is an important ingredient of models of magma dynamics Thermal diffusion and reactive flow power melting within channels</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2011GC003989</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Channeling ; Channels ; Conservation ; Dynamics ; Energy conservation ; Flow ; Heterogeneity ; Lava ; Magma ; magmatic channelization ; Mantle ; Mathematical models ; melt migration ; Melting ; mid-ocean ridge ; Porosity ; Thermal diffusion ; Upwelling</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2012-05, Vol.13 (5), p.np-n/a</ispartof><rights>Copyright 2012 by the American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4713-f55069261586d77c39ede90e78f2aa40cc7c1eeaedaceb92717dff23a4e87243</citedby><cites>FETCH-LOGICAL-a4713-f55069261586d77c39ede90e78f2aa40cc7c1eeaedaceb92717dff23a4e87243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2011GC003989$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2011GC003989$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,11567,27929,27930,45579,45580,46057,46481</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2011GC003989$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Weatherley, S. M.</creatorcontrib><creatorcontrib>Katz, R. F.</creatorcontrib><title>Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>Beneath mid‐ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid‐ocean ridge lavas indicates that the mantle is chemically heterogeneous, but the consequences of this heterogeneity for reactive porous flow remain unclear. Using numerical models of coupled magma/mantle dynamics, we investigate the relationships between mantle heterogeneity, melting, and magmatic channelization. The models are based on conservation mass, momentum, energy, and composition in a system with two phases and two thermodynamic components in local thermodynamic equilibrium. One of these components is more fusible than the other. In this context, we find that heterogeneities enriched in the more fusible component can nucleate magmatic channels. To understand this result we consider an expression for the melting rate derived from the conservation principles. This expression quantifies the relationship of decompression, reactive flow, and thermal diffusion to the melting rate. With it, we assess their relative importance in the ambient mantle, channels, and enriched heterogeneities. In our models, heat diffuses into fertile channels and powers melting, in combination with reactive flow. These results suggest that thermal diffusion influences the dynamics of magmatic channelization. Key Points Channelized magmatic flow may be a consequence of mantle heterogeneity Conservation of energy is an important ingredient of models of magma dynamics Thermal diffusion and reactive flow power melting within channels</description><subject>Channeling</subject><subject>Channels</subject><subject>Conservation</subject><subject>Dynamics</subject><subject>Energy conservation</subject><subject>Flow</subject><subject>Heterogeneity</subject><subject>Lava</subject><subject>Magma</subject><subject>magmatic channelization</subject><subject>Mantle</subject><subject>Mathematical models</subject><subject>melt migration</subject><subject>Melting</subject><subject>mid-ocean ridge</subject><subject>Porosity</subject><subject>Thermal diffusion</subject><subject>Upwelling</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkcFOwzAMhisEEjC48QCVuHBYIUmTujnCGAUx4DAkJC5RSN2Rkbaj6TTG09MxhBAHkA-25M-_bf1BcEDJMSVMnjBCaTYgJJap3Ah2qGAiYoTB5o96O9j1fkoI5UKkO8H4Bl1rq0moqzw0z7qq0Nl3zMNST0rdWhMWrl6EtuqaWFqjnVuGz9hiU0-wwnru--F8tkDnViKlrlqHe8FWoZ3H_a_cC-4vhveDy2h0l10NTkeR5kDjqBCCJJIlVKRJDmBiiTlKgpAWTGtOjAFDETXm2uCTZEAhLwoWa44pMB73gqO17KypX-foW1Vab7pL9OddiiacMclSgP9RwTgnEgTt0MNf6LSeN1X3h6KQEBonXXRUf02Zpva-wULNGlvqZqkoUSsv1E8vOpyt8YV1uPyTVVmWDRmF1Y5oPWR9i2_fQ7p5UQnEINTDbaauz_j4HEaZeow_ADAImPQ</recordid><startdate>201205</startdate><enddate>201205</enddate><creator>Weatherley, S. M.</creator><creator>Katz, R. F.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201205</creationdate><title>Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle</title><author>Weatherley, S. M. ; Katz, R. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4713-f55069261586d77c39ede90e78f2aa40cc7c1eeaedaceb92717dff23a4e87243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Channeling</topic><topic>Channels</topic><topic>Conservation</topic><topic>Dynamics</topic><topic>Energy conservation</topic><topic>Flow</topic><topic>Heterogeneity</topic><topic>Lava</topic><topic>Magma</topic><topic>magmatic channelization</topic><topic>Mantle</topic><topic>Mathematical models</topic><topic>melt migration</topic><topic>Melting</topic><topic>mid-ocean ridge</topic><topic>Porosity</topic><topic>Thermal diffusion</topic><topic>Upwelling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weatherley, S. M.</creatorcontrib><creatorcontrib>Katz, R. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weatherley, S. M.</au><au>Katz, R. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2012-05</date><risdate>2012</risdate><volume>13</volume><issue>5</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>Beneath mid‐ocean ridges, magma is thought to rise through a network of high porosity channels that form by reactive flow. Partial mantle melts travel rapidly through these channels to the surface, and retain the geochemical signature of their source rock. Global analyses of mid‐ocean ridge lavas indicates that the mantle is chemically heterogeneous, but the consequences of this heterogeneity for reactive porous flow remain unclear. Using numerical models of coupled magma/mantle dynamics, we investigate the relationships between mantle heterogeneity, melting, and magmatic channelization. The models are based on conservation mass, momentum, energy, and composition in a system with two phases and two thermodynamic components in local thermodynamic equilibrium. One of these components is more fusible than the other. In this context, we find that heterogeneities enriched in the more fusible component can nucleate magmatic channels. To understand this result we consider an expression for the melting rate derived from the conservation principles. This expression quantifies the relationship of decompression, reactive flow, and thermal diffusion to the melting rate. With it, we assess their relative importance in the ambient mantle, channels, and enriched heterogeneities. In our models, heat diffuses into fertile channels and powers melting, in combination with reactive flow. These results suggest that thermal diffusion influences the dynamics of magmatic channelization. Key Points Channelized magmatic flow may be a consequence of mantle heterogeneity Conservation of energy is an important ingredient of models of magma dynamics Thermal diffusion and reactive flow power melting within channels</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2011GC003989</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2012-05, Vol.13 (5), p.np-n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_miscellaneous_1642292877
source Wiley Online Library (Open Access Collection)
subjects Channeling
Channels
Conservation
Dynamics
Energy conservation
Flow
Heterogeneity
Lava
Magma
magmatic channelization
Mantle
Mathematical models
melt migration
Melting
mid-ocean ridge
Porosity
Thermal diffusion
Upwelling
title Melting and channelized magmatic flow in chemically heterogeneous, upwelling mantle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T22%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Melting%20and%20channelized%20magmatic%20flow%20in%20chemically%20heterogeneous,%20upwelling%20mantle&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Weatherley,%20S.%20M.&rft.date=2012-05&rft.volume=13&rft.issue=5&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2011GC003989&rft_dat=%3Cproquest_24P%3E1524409751%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1760136363&rft_id=info:pmid/&rfr_iscdi=true