Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity

The influence of the ionosphere can be one of the main obstacles to GPS carrier phase ambiguity resolution in real‐time, particularly over long baselines. This is important to all users of GPS requiring sub‐decimeter positioning, perhaps in real time, especially with high geomagnetic activity or clo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2000-07, Vol.27 (13), p.2009-2012
Hauptverfasser: Hernández-Pajares, M., Juan, J. M., Sanz, J., Colombo, O. L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2012
container_issue 13
container_start_page 2009
container_title Geophysical research letters
container_volume 27
creator Hernández-Pajares, M.
Juan, J. M.
Sanz, J.
Colombo, O. L.
description The influence of the ionosphere can be one of the main obstacles to GPS carrier phase ambiguity resolution in real‐time, particularly over long baselines. This is important to all users of GPS requiring sub‐decimeter positioning, perhaps in real time, especially with high geomagnetic activity or close to the Solar Maximum. Therefore, it is desirable to have a precise estimation of the ionospheric delay in real‐time, to correct the data. In this paper we asses a real‐time tomographic model of the ionosphere created using dual‐frequency phase data simultaneously collected with the receivers of a network of stations in the USA and Canada, with separations of 400–1000 km, during a period of high geomagnetic activity (Kp=6). When the tomographic ionospheric correction is included, the resolution on‐the‐fly (OTF) of the widelane double‐differenced ambiguities at the reference stations is nearly 100% successful for satellite elevations above 20 degrees, while the resolution of the L1, L2 ambiguities at the rover is typically more than 80% successful.
doi_str_mv 10.1029/1999GL011239
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642292386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524417103</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4095-5c0d6e2bd97548a7c38dc69c519231554bc13af31f43d31873d9db105325f6433</originalsourceid><addsrcrecordid>eNqFkc9u1DAQhyMEEkvhxgP4wIFDAx7_SeJjtYKAtIJSQHCzZh0nMU3Wqe2l7JvwuHi1FXCC04ys7_eNxlMUT4G-AMrUS1BKtRsKwLi6V6xACVE2lNb3ixWlKvesrh4Wj2L8RinllMOq-HmxLJMzmJzfEd-TXHxcRhucIcnPfgi4jIfckmBxKpObLWkvPxKDITgbymXEaAnOWzfsXXI2kisb_bQ_-s4JJhINTvk1qwWlJeTB5HomuOvIrUsjGd0wksH6GYedTXkomuS-u3R4XDzocYr2yV09Kz6_fvVp_abcvG_fri82pRFUyVIa2lWWbTtVS9FgbXjTmUoZCYpxkFJsDXDsOfSCdxyamneq2wKVnMm-EpyfFc9P3iX4m72NSc8uGjtNuLN-HzVUgrHsaqr_o5IJATXQo_X8hJrgYwy210twM4aDBqqPt9J_3yrjz-7MePyvPuDOuPgnk1cVvMkYO2G3brKHfyp1e7UBVnOZQ-Up5GKyP36HMFzrqua11F_etZrDV3r5Yd3qNf8FpdawWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524417103</pqid></control><display><type>article</type><title>Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hernández-Pajares, M. ; Juan, J. M. ; Sanz, J. ; Colombo, O. L.</creator><creatorcontrib>Hernández-Pajares, M. ; Juan, J. M. ; Sanz, J. ; Colombo, O. L.</creatorcontrib><description>The influence of the ionosphere can be one of the main obstacles to GPS carrier phase ambiguity resolution in real‐time, particularly over long baselines. This is important to all users of GPS requiring sub‐decimeter positioning, perhaps in real time, especially with high geomagnetic activity or close to the Solar Maximum. Therefore, it is desirable to have a precise estimation of the ionospheric delay in real‐time, to correct the data. In this paper we asses a real‐time tomographic model of the ionosphere created using dual‐frequency phase data simultaneously collected with the receivers of a network of stations in the USA and Canada, with separations of 400–1000 km, during a period of high geomagnetic activity (Kp=6). When the tomographic ionospheric correction is included, the resolution on‐the‐fly (OTF) of the widelane double‐differenced ambiguities at the reference stations is nearly 100% successful for satellite elevations above 20 degrees, while the resolution of the L1, L2 ambiguities at the rover is typically more than 80% successful.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/1999GL011239</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Ambiguity ; Carriers ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Geomagnetism ; Geophysics: general, magnetic, electric and thermic methods and properties ; Internal geophysics ; Ionosphere ; Ionospherics ; Obstacles ; Real time ; Stations</subject><ispartof>Geophysical research letters, 2000-07, Vol.27 (13), p.2009-2012</ispartof><rights>Copyright 2000 by the American Geophysical Union.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4095-5c0d6e2bd97548a7c38dc69c519231554bc13af31f43d31873d9db105325f6433</citedby><cites>FETCH-LOGICAL-c4095-5c0d6e2bd97548a7c38dc69c519231554bc13af31f43d31873d9db105325f6433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F1999GL011239$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F1999GL011239$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1409438$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hernández-Pajares, M.</creatorcontrib><creatorcontrib>Juan, J. M.</creatorcontrib><creatorcontrib>Sanz, J.</creatorcontrib><creatorcontrib>Colombo, O. L.</creatorcontrib><title>Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>The influence of the ionosphere can be one of the main obstacles to GPS carrier phase ambiguity resolution in real‐time, particularly over long baselines. This is important to all users of GPS requiring sub‐decimeter positioning, perhaps in real time, especially with high geomagnetic activity or close to the Solar Maximum. Therefore, it is desirable to have a precise estimation of the ionospheric delay in real‐time, to correct the data. In this paper we asses a real‐time tomographic model of the ionosphere created using dual‐frequency phase data simultaneously collected with the receivers of a network of stations in the USA and Canada, with separations of 400–1000 km, during a period of high geomagnetic activity (Kp=6). When the tomographic ionospheric correction is included, the resolution on‐the‐fly (OTF) of the widelane double‐differenced ambiguities at the reference stations is nearly 100% successful for satellite elevations above 20 degrees, while the resolution of the L1, L2 ambiguities at the rover is typically more than 80% successful.</description><subject>Ambiguity</subject><subject>Carriers</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Geomagnetism</subject><subject>Geophysics: general, magnetic, electric and thermic methods and properties</subject><subject>Internal geophysics</subject><subject>Ionosphere</subject><subject>Ionospherics</subject><subject>Obstacles</subject><subject>Real time</subject><subject>Stations</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQhyMEEkvhxgP4wIFDAx7_SeJjtYKAtIJSQHCzZh0nMU3Wqe2l7JvwuHi1FXCC04ys7_eNxlMUT4G-AMrUS1BKtRsKwLi6V6xACVE2lNb3ixWlKvesrh4Wj2L8RinllMOq-HmxLJMzmJzfEd-TXHxcRhucIcnPfgi4jIfckmBxKpObLWkvPxKDITgbymXEaAnOWzfsXXI2kisb_bQ_-s4JJhINTvk1qwWlJeTB5HomuOvIrUsjGd0wksH6GYedTXkomuS-u3R4XDzocYr2yV09Kz6_fvVp_abcvG_fri82pRFUyVIa2lWWbTtVS9FgbXjTmUoZCYpxkFJsDXDsOfSCdxyamneq2wKVnMm-EpyfFc9P3iX4m72NSc8uGjtNuLN-HzVUgrHsaqr_o5IJATXQo_X8hJrgYwy210twM4aDBqqPt9J_3yrjz-7MePyvPuDOuPgnk1cVvMkYO2G3brKHfyp1e7UBVnOZQ-Up5GKyP36HMFzrqua11F_etZrDV3r5Yd3qNf8FpdawWg</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Hernández-Pajares, M.</creator><creator>Juan, J. M.</creator><creator>Sanz, J.</creator><creator>Colombo, O. L.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20000701</creationdate><title>Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity</title><author>Hernández-Pajares, M. ; Juan, J. M. ; Sanz, J. ; Colombo, O. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4095-5c0d6e2bd97548a7c38dc69c519231554bc13af31f43d31873d9db105325f6433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Ambiguity</topic><topic>Carriers</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Geomagnetism</topic><topic>Geophysics: general, magnetic, electric and thermic methods and properties</topic><topic>Internal geophysics</topic><topic>Ionosphere</topic><topic>Ionospherics</topic><topic>Obstacles</topic><topic>Real time</topic><topic>Stations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hernández-Pajares, M.</creatorcontrib><creatorcontrib>Juan, J. M.</creatorcontrib><creatorcontrib>Sanz, J.</creatorcontrib><creatorcontrib>Colombo, O. L.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hernández-Pajares, M.</au><au>Juan, J. M.</au><au>Sanz, J.</au><au>Colombo, O. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2000-07-01</date><risdate>2000</risdate><volume>27</volume><issue>13</issue><spage>2009</spage><epage>2012</epage><pages>2009-2012</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>The influence of the ionosphere can be one of the main obstacles to GPS carrier phase ambiguity resolution in real‐time, particularly over long baselines. This is important to all users of GPS requiring sub‐decimeter positioning, perhaps in real time, especially with high geomagnetic activity or close to the Solar Maximum. Therefore, it is desirable to have a precise estimation of the ionospheric delay in real‐time, to correct the data. In this paper we asses a real‐time tomographic model of the ionosphere created using dual‐frequency phase data simultaneously collected with the receivers of a network of stations in the USA and Canada, with separations of 400–1000 km, during a period of high geomagnetic activity (Kp=6). When the tomographic ionospheric correction is included, the resolution on‐the‐fly (OTF) of the widelane double‐differenced ambiguities at the reference stations is nearly 100% successful for satellite elevations above 20 degrees, while the resolution of the L1, L2 ambiguities at the rover is typically more than 80% successful.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/1999GL011239</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2000-07, Vol.27 (13), p.2009-2012
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1642292386
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Ambiguity
Carriers
Earth sciences
Earth, ocean, space
Exact sciences and technology
Geomagnetism
Geophysics: general, magnetic, electric and thermic methods and properties
Internal geophysics
Ionosphere
Ionospherics
Obstacles
Real time
Stations
title Application of ionospheric tomography to real-time GPS carrier-phase ambiguities Resolution, at scales of 400-1000 km and with high geomagnetic activity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A39%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20ionospheric%20tomography%20to%20real-time%20GPS%20carrier-phase%20ambiguities%20Resolution,%20at%20scales%20of%20400-1000%20km%20and%20with%20high%20geomagnetic%20activity&rft.jtitle=Geophysical%20research%20letters&rft.au=Hern%C3%A1ndez-Pajares,%20M.&rft.date=2000-07-01&rft.volume=27&rft.issue=13&rft.spage=2009&rft.epage=2012&rft.pages=2009-2012&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/1999GL011239&rft_dat=%3Cproquest_cross%3E1524417103%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524417103&rft_id=info:pmid/&rfr_iscdi=true