Assessing canopy PRI from airborne imagery to map water stress in maize

This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ISPRS journal of photogrammetry and remote sensing 2013-12, Vol.86, p.168-177
Hauptverfasser: Rossini, M., Fava, F., Cogliati, S., Meroni, M., Marchesi, A., Panigada, C., Giardino, C., Busetto, L., Migliavacca, M., Amaducci, S., Colombo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue
container_start_page 168
container_title ISPRS journal of photogrammetry and remote sensing
container_volume 86
creator Rossini, M.
Fava, F.
Cogliati, S.
Meroni, M.
Marchesi, A.
Panigada, C.
Giardino, C.
Busetto, L.
Migliavacca, M.
Amaducci, S.
Colombo, R.
description This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred. A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.
doi_str_mv 10.1016/j.isprsjprs.2013.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642291986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924271613002244</els_id><sourcerecordid>1642291986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EEqHwG-oLEpcNM17b6z1GFZRKlUBAz5brnY0cJevFswWFX49Dql57sCyNv_dm5lmIS4Q1AtqPu3XiufCunrUCbGt1DaBeiBW6TjVOtealWEGvdKM6tK_FG-YdAKCxbiWuN8zEnKatjGHK81F--34jx5IPMqRyn8tEMh3ClspRLlkewiz_hIWK5KVUnUxTraW_9Fa8GsOe6d3jfSHuPn_6efWluf16fXO1uW2iAVwaNGpwXatDr7po3Tjo0d4bGIgGA8rqHocImroYdd3BdNpZ6g1S39MIqLv2Qnw4-84l_3ogXvwhcaT9PkyUH9ij1Ur12Dv7PGqw1abtLVa0O6OxZOZCo59L3bocPYI_pex3_illf0r59FAnrMr3j00Cx7AfS5hi4ie5cgDWaajc5ZkbQ_ZhWypz96Ma2foTFvC_0-ZMUI3vd6LiOSaaIg2pUFz8kNOz0_wDH-Ge7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513453961</pqid></control><display><type>article</type><title>Assessing canopy PRI from airborne imagery to map water stress in maize</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rossini, M. ; Fava, F. ; Cogliati, S. ; Meroni, M. ; Marchesi, A. ; Panigada, C. ; Giardino, C. ; Busetto, L. ; Migliavacca, M. ; Amaducci, S. ; Colombo, R.</creator><creatorcontrib>Rossini, M. ; Fava, F. ; Cogliati, S. ; Meroni, M. ; Marchesi, A. ; Panigada, C. ; Giardino, C. ; Busetto, L. ; Migliavacca, M. ; Amaducci, S. ; Colombo, R.</creatorcontrib><description>This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred. A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.</description><identifier>ISSN: 0924-2716</identifier><identifier>EISSN: 1872-8235</identifier><identifier>DOI: 10.1016/j.isprsjprs.2013.10.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aerial ; air temperature ; Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Canopies ; canopy ; chlorophyll ; Chlorophylls ; corn ; Crop ; demonstration farms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fluorescence ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Hyperspectral ; hyperspectral imagery ; Imagery ; Intermediate frequency ; Internal geophysics ; irrigation rates ; Leaf area index ; leaves ; Maize ; Monitoring ; physiological state ; precision agriculture ; Reflectance ; regression analysis ; remote sensing ; spatial data ; Stresses ; surveys ; Teledetection and vegetation maps ; Vegetation ; water content ; water stress</subject><ispartof>ISPRS journal of photogrammetry and remote sensing, 2013-12, Vol.86, p.168-177</ispartof><rights>2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</citedby><cites>FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isprsjprs.2013.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28006840$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossini, M.</creatorcontrib><creatorcontrib>Fava, F.</creatorcontrib><creatorcontrib>Cogliati, S.</creatorcontrib><creatorcontrib>Meroni, M.</creatorcontrib><creatorcontrib>Marchesi, A.</creatorcontrib><creatorcontrib>Panigada, C.</creatorcontrib><creatorcontrib>Giardino, C.</creatorcontrib><creatorcontrib>Busetto, L.</creatorcontrib><creatorcontrib>Migliavacca, M.</creatorcontrib><creatorcontrib>Amaducci, S.</creatorcontrib><creatorcontrib>Colombo, R.</creatorcontrib><title>Assessing canopy PRI from airborne imagery to map water stress in maize</title><title>ISPRS journal of photogrammetry and remote sensing</title><description>This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred. A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.</description><subject>Aerial</subject><subject>air temperature</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Canopies</subject><subject>canopy</subject><subject>chlorophyll</subject><subject>Chlorophylls</subject><subject>corn</subject><subject>Crop</subject><subject>demonstration farms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Hyperspectral</subject><subject>hyperspectral imagery</subject><subject>Imagery</subject><subject>Intermediate frequency</subject><subject>Internal geophysics</subject><subject>irrigation rates</subject><subject>Leaf area index</subject><subject>leaves</subject><subject>Maize</subject><subject>Monitoring</subject><subject>physiological state</subject><subject>precision agriculture</subject><subject>Reflectance</subject><subject>regression analysis</subject><subject>remote sensing</subject><subject>spatial data</subject><subject>Stresses</subject><subject>surveys</subject><subject>Teledetection and vegetation maps</subject><subject>Vegetation</subject><subject>water content</subject><subject>water stress</subject><issn>0924-2716</issn><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EEqHwG-oLEpcNM17b6z1GFZRKlUBAz5brnY0cJevFswWFX49Dql57sCyNv_dm5lmIS4Q1AtqPu3XiufCunrUCbGt1DaBeiBW6TjVOtealWEGvdKM6tK_FG-YdAKCxbiWuN8zEnKatjGHK81F--34jx5IPMqRyn8tEMh3ClspRLlkewiz_hIWK5KVUnUxTraW_9Fa8GsOe6d3jfSHuPn_6efWluf16fXO1uW2iAVwaNGpwXatDr7po3Tjo0d4bGIgGA8rqHocImroYdd3BdNpZ6g1S39MIqLv2Qnw4-84l_3ogXvwhcaT9PkyUH9ij1Ur12Dv7PGqw1abtLVa0O6OxZOZCo59L3bocPYI_pex3_illf0r59FAnrMr3j00Cx7AfS5hi4ie5cgDWaajc5ZkbQ_ZhWypz96Ma2foTFvC_0-ZMUI3vd6LiOSaaIg2pUFz8kNOz0_wDH-Ge7g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Rossini, M.</creator><creator>Fava, F.</creator><creator>Cogliati, S.</creator><creator>Meroni, M.</creator><creator>Marchesi, A.</creator><creator>Panigada, C.</creator><creator>Giardino, C.</creator><creator>Busetto, L.</creator><creator>Migliavacca, M.</creator><creator>Amaducci, S.</creator><creator>Colombo, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Assessing canopy PRI from airborne imagery to map water stress in maize</title><author>Rossini, M. ; Fava, F. ; Cogliati, S. ; Meroni, M. ; Marchesi, A. ; Panigada, C. ; Giardino, C. ; Busetto, L. ; Migliavacca, M. ; Amaducci, S. ; Colombo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerial</topic><topic>air temperature</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Canopies</topic><topic>canopy</topic><topic>chlorophyll</topic><topic>Chlorophylls</topic><topic>corn</topic><topic>Crop</topic><topic>demonstration farms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Hyperspectral</topic><topic>hyperspectral imagery</topic><topic>Imagery</topic><topic>Intermediate frequency</topic><topic>Internal geophysics</topic><topic>irrigation rates</topic><topic>Leaf area index</topic><topic>leaves</topic><topic>Maize</topic><topic>Monitoring</topic><topic>physiological state</topic><topic>precision agriculture</topic><topic>Reflectance</topic><topic>regression analysis</topic><topic>remote sensing</topic><topic>spatial data</topic><topic>Stresses</topic><topic>surveys</topic><topic>Teledetection and vegetation maps</topic><topic>Vegetation</topic><topic>water content</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossini, M.</creatorcontrib><creatorcontrib>Fava, F.</creatorcontrib><creatorcontrib>Cogliati, S.</creatorcontrib><creatorcontrib>Meroni, M.</creatorcontrib><creatorcontrib>Marchesi, A.</creatorcontrib><creatorcontrib>Panigada, C.</creatorcontrib><creatorcontrib>Giardino, C.</creatorcontrib><creatorcontrib>Busetto, L.</creatorcontrib><creatorcontrib>Migliavacca, M.</creatorcontrib><creatorcontrib>Amaducci, S.</creatorcontrib><creatorcontrib>Colombo, R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossini, M.</au><au>Fava, F.</au><au>Cogliati, S.</au><au>Meroni, M.</au><au>Marchesi, A.</au><au>Panigada, C.</au><au>Giardino, C.</au><au>Busetto, L.</au><au>Migliavacca, M.</au><au>Amaducci, S.</au><au>Colombo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing canopy PRI from airborne imagery to map water stress in maize</atitle><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>86</volume><spage>168</spage><epage>177</epage><pages>168-177</pages><issn>0924-2716</issn><eissn>1872-8235</eissn><abstract>This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred. A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.isprsjprs.2013.10.002</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-2716
ispartof ISPRS journal of photogrammetry and remote sensing, 2013-12, Vol.86, p.168-177
issn 0924-2716
1872-8235
language eng
recordid cdi_proquest_miscellaneous_1642291986
source Elsevier ScienceDirect Journals Complete
subjects Aerial
air temperature
Animal, plant and microbial ecology
Applied geophysics
Biological and medical sciences
Canopies
canopy
chlorophyll
Chlorophylls
corn
Crop
demonstration farms
Earth sciences
Earth, ocean, space
Exact sciences and technology
fluorescence
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Hyperspectral
hyperspectral imagery
Imagery
Intermediate frequency
Internal geophysics
irrigation rates
Leaf area index
leaves
Maize
Monitoring
physiological state
precision agriculture
Reflectance
regression analysis
remote sensing
spatial data
Stresses
surveys
Teledetection and vegetation maps
Vegetation
water content
water stress
title Assessing canopy PRI from airborne imagery to map water stress in maize
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20canopy%20PRI%20from%20airborne%20imagery%20to%20map%20water%20stress%20in%20maize&rft.jtitle=ISPRS%20journal%20of%20photogrammetry%20and%20remote%20sensing&rft.au=Rossini,%20M.&rft.date=2013-12-01&rft.volume=86&rft.spage=168&rft.epage=177&rft.pages=168-177&rft.issn=0924-2716&rft.eissn=1872-8235&rft_id=info:doi/10.1016/j.isprsjprs.2013.10.002&rft_dat=%3Cproquest_cross%3E1642291986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513453961&rft_id=info:pmid/&rft_els_id=S0924271613002244&rfr_iscdi=true