Assessing canopy PRI from airborne imagery to map water stress in maize
This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different i...
Gespeichert in:
Veröffentlicht in: | ISPRS journal of photogrammetry and remote sensing 2013-12, Vol.86, p.168-177 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | |
container_start_page | 168 |
container_title | ISPRS journal of photogrammetry and remote sensing |
container_volume | 86 |
creator | Rossini, M. Fava, F. Cogliati, S. Meroni, M. Marchesi, A. Panigada, C. Giardino, C. Busetto, L. Migliavacca, M. Amaducci, S. Colombo, R. |
description | This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred.
A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management. |
doi_str_mv | 10.1016/j.isprsjprs.2013.10.002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642291986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924271613002244</els_id><sourcerecordid>1642291986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</originalsourceid><addsrcrecordid>eNqFkUFvEzEQhS0EEqHwG-oLEpcNM17b6z1GFZRKlUBAz5brnY0cJevFswWFX49Dql57sCyNv_dm5lmIS4Q1AtqPu3XiufCunrUCbGt1DaBeiBW6TjVOtealWEGvdKM6tK_FG-YdAKCxbiWuN8zEnKatjGHK81F--34jx5IPMqRyn8tEMh3ClspRLlkewiz_hIWK5KVUnUxTraW_9Fa8GsOe6d3jfSHuPn_6efWluf16fXO1uW2iAVwaNGpwXatDr7po3Tjo0d4bGIgGA8rqHocImroYdd3BdNpZ6g1S39MIqLv2Qnw4-84l_3ogXvwhcaT9PkyUH9ij1Ur12Dv7PGqw1abtLVa0O6OxZOZCo59L3bocPYI_pex3_illf0r59FAnrMr3j00Cx7AfS5hi4ie5cgDWaajc5ZkbQ_ZhWypz96Ma2foTFvC_0-ZMUI3vd6LiOSaaIg2pUFz8kNOz0_wDH-Ge7g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1513453961</pqid></control><display><type>article</type><title>Assessing canopy PRI from airborne imagery to map water stress in maize</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rossini, M. ; Fava, F. ; Cogliati, S. ; Meroni, M. ; Marchesi, A. ; Panigada, C. ; Giardino, C. ; Busetto, L. ; Migliavacca, M. ; Amaducci, S. ; Colombo, R.</creator><creatorcontrib>Rossini, M. ; Fava, F. ; Cogliati, S. ; Meroni, M. ; Marchesi, A. ; Panigada, C. ; Giardino, C. ; Busetto, L. ; Migliavacca, M. ; Amaducci, S. ; Colombo, R.</creatorcontrib><description>This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred.
A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.</description><identifier>ISSN: 0924-2716</identifier><identifier>EISSN: 1872-8235</identifier><identifier>DOI: 10.1016/j.isprsjprs.2013.10.002</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Aerial ; air temperature ; Animal, plant and microbial ecology ; Applied geophysics ; Biological and medical sciences ; Canopies ; canopy ; chlorophyll ; Chlorophylls ; corn ; Crop ; demonstration farms ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; fluorescence ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Hyperspectral ; hyperspectral imagery ; Imagery ; Intermediate frequency ; Internal geophysics ; irrigation rates ; Leaf area index ; leaves ; Maize ; Monitoring ; physiological state ; precision agriculture ; Reflectance ; regression analysis ; remote sensing ; spatial data ; Stresses ; surveys ; Teledetection and vegetation maps ; Vegetation ; water content ; water stress</subject><ispartof>ISPRS journal of photogrammetry and remote sensing, 2013-12, Vol.86, p.168-177</ispartof><rights>2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</citedby><cites>FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.isprsjprs.2013.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28006840$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rossini, M.</creatorcontrib><creatorcontrib>Fava, F.</creatorcontrib><creatorcontrib>Cogliati, S.</creatorcontrib><creatorcontrib>Meroni, M.</creatorcontrib><creatorcontrib>Marchesi, A.</creatorcontrib><creatorcontrib>Panigada, C.</creatorcontrib><creatorcontrib>Giardino, C.</creatorcontrib><creatorcontrib>Busetto, L.</creatorcontrib><creatorcontrib>Migliavacca, M.</creatorcontrib><creatorcontrib>Amaducci, S.</creatorcontrib><creatorcontrib>Colombo, R.</creatorcontrib><title>Assessing canopy PRI from airborne imagery to map water stress in maize</title><title>ISPRS journal of photogrammetry and remote sensing</title><description>This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred.
A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.</description><subject>Aerial</subject><subject>air temperature</subject><subject>Animal, plant and microbial ecology</subject><subject>Applied geophysics</subject><subject>Biological and medical sciences</subject><subject>Canopies</subject><subject>canopy</subject><subject>chlorophyll</subject><subject>Chlorophylls</subject><subject>corn</subject><subject>Crop</subject><subject>demonstration farms</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>fluorescence</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Hyperspectral</subject><subject>hyperspectral imagery</subject><subject>Imagery</subject><subject>Intermediate frequency</subject><subject>Internal geophysics</subject><subject>irrigation rates</subject><subject>Leaf area index</subject><subject>leaves</subject><subject>Maize</subject><subject>Monitoring</subject><subject>physiological state</subject><subject>precision agriculture</subject><subject>Reflectance</subject><subject>regression analysis</subject><subject>remote sensing</subject><subject>spatial data</subject><subject>Stresses</subject><subject>surveys</subject><subject>Teledetection and vegetation maps</subject><subject>Vegetation</subject><subject>water content</subject><subject>water stress</subject><issn>0924-2716</issn><issn>1872-8235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvEzEQhS0EEqHwG-oLEpcNM17b6z1GFZRKlUBAz5brnY0cJevFswWFX49Dql57sCyNv_dm5lmIS4Q1AtqPu3XiufCunrUCbGt1DaBeiBW6TjVOtealWEGvdKM6tK_FG-YdAKCxbiWuN8zEnKatjGHK81F--34jx5IPMqRyn8tEMh3ClspRLlkewiz_hIWK5KVUnUxTraW_9Fa8GsOe6d3jfSHuPn_6efWluf16fXO1uW2iAVwaNGpwXatDr7po3Tjo0d4bGIgGA8rqHocImroYdd3BdNpZ6g1S39MIqLv2Qnw4-84l_3ogXvwhcaT9PkyUH9ij1Ur12Dv7PGqw1abtLVa0O6OxZOZCo59L3bocPYI_pex3_illf0r59FAnrMr3j00Cx7AfS5hi4ie5cgDWaajc5ZkbQ_ZhWypz96Ma2foTFvC_0-ZMUI3vd6LiOSaaIg2pUFz8kNOz0_wDH-Ge7g</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Rossini, M.</creator><creator>Fava, F.</creator><creator>Cogliati, S.</creator><creator>Meroni, M.</creator><creator>Marchesi, A.</creator><creator>Panigada, C.</creator><creator>Giardino, C.</creator><creator>Busetto, L.</creator><creator>Migliavacca, M.</creator><creator>Amaducci, S.</creator><creator>Colombo, R.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20131201</creationdate><title>Assessing canopy PRI from airborne imagery to map water stress in maize</title><author>Rossini, M. ; Fava, F. ; Cogliati, S. ; Meroni, M. ; Marchesi, A. ; Panigada, C. ; Giardino, C. ; Busetto, L. ; Migliavacca, M. ; Amaducci, S. ; Colombo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c501t-152d8734a927c68fd4f6b50deed5026491dc04e7cc400257486e951e99ef01473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aerial</topic><topic>air temperature</topic><topic>Animal, plant and microbial ecology</topic><topic>Applied geophysics</topic><topic>Biological and medical sciences</topic><topic>Canopies</topic><topic>canopy</topic><topic>chlorophyll</topic><topic>Chlorophylls</topic><topic>corn</topic><topic>Crop</topic><topic>demonstration farms</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>fluorescence</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Hyperspectral</topic><topic>hyperspectral imagery</topic><topic>Imagery</topic><topic>Intermediate frequency</topic><topic>Internal geophysics</topic><topic>irrigation rates</topic><topic>Leaf area index</topic><topic>leaves</topic><topic>Maize</topic><topic>Monitoring</topic><topic>physiological state</topic><topic>precision agriculture</topic><topic>Reflectance</topic><topic>regression analysis</topic><topic>remote sensing</topic><topic>spatial data</topic><topic>Stresses</topic><topic>surveys</topic><topic>Teledetection and vegetation maps</topic><topic>Vegetation</topic><topic>water content</topic><topic>water stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rossini, M.</creatorcontrib><creatorcontrib>Fava, F.</creatorcontrib><creatorcontrib>Cogliati, S.</creatorcontrib><creatorcontrib>Meroni, M.</creatorcontrib><creatorcontrib>Marchesi, A.</creatorcontrib><creatorcontrib>Panigada, C.</creatorcontrib><creatorcontrib>Giardino, C.</creatorcontrib><creatorcontrib>Busetto, L.</creatorcontrib><creatorcontrib>Migliavacca, M.</creatorcontrib><creatorcontrib>Amaducci, S.</creatorcontrib><creatorcontrib>Colombo, R.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rossini, M.</au><au>Fava, F.</au><au>Cogliati, S.</au><au>Meroni, M.</au><au>Marchesi, A.</au><au>Panigada, C.</au><au>Giardino, C.</au><au>Busetto, L.</au><au>Migliavacca, M.</au><au>Amaducci, S.</au><au>Colombo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing canopy PRI from airborne imagery to map water stress in maize</atitle><jtitle>ISPRS journal of photogrammetry and remote sensing</jtitle><date>2013-12-01</date><risdate>2013</risdate><volume>86</volume><spage>168</spage><epage>177</epage><pages>168-177</pages><issn>0924-2716</issn><eissn>1872-8235</eissn><abstract>This paper presents a method for mapping water stress in a maize field using hyperspectral remote sensing imagery. An airborne survey using AISA (Specim, Finland) was performed in July 2008 over an experimental farm in Italy. Hyperspectral data were acquired over a maize field with three different irrigation regimes. An intensive field campaign was also conducted concurrently with imagery acquisition to measure relative leaf water content (RWC), active chlorophyll fluorescence (ΔF/Fm′), leaf temperature (Tl) and Leaf Area Index (LAI). The analysis of the field data showed that at the time of the airborne overpass the maize plots with irrigation deficits were experiencing a moderate water stress, affecting the plant physiological status (ΔF/Fm′, difference between Tl and air temperature (Tair), and RWC) but not the canopy structure (LAI). Among the different Vegetation Indices (VIs) computed from the airborne imagery the Photochemical Reflectance Index computed using the reflectance at 570nm as the reference band (PRI570) showed the strongest relationships with ΔF/Fm′ (r2=0.76), Tl−Tair (r2=0.82) and RWC (r2=0.64) and the red-edge Chlorophyll Index (CIred-edge) with LAI (r2=0.64). Thus PRI has been proven to be related to water stress at early stages, before structural changes occurred.
A method based on an ordinal logit regression model was proposed to map water stress classes based on airborne hyperspectral imagery. PRI570 showed the highest performances when fitted against water stress classes, identified by the irrigation amounts applied in the field, and was therefore used to map water stress in the maize field. This study proves the feasibility of mapping stress classes using hyperspectral indices and demonstrates the potential applicability of remote sensing data in precision agriculture for optimizing irrigation management.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.isprsjprs.2013.10.002</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-2716 |
ispartof | ISPRS journal of photogrammetry and remote sensing, 2013-12, Vol.86, p.168-177 |
issn | 0924-2716 1872-8235 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642291986 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aerial air temperature Animal, plant and microbial ecology Applied geophysics Biological and medical sciences Canopies canopy chlorophyll Chlorophylls corn Crop demonstration farms Earth sciences Earth, ocean, space Exact sciences and technology fluorescence Fundamental and applied biological sciences. Psychology General aspects. Techniques Hyperspectral hyperspectral imagery Imagery Intermediate frequency Internal geophysics irrigation rates Leaf area index leaves Maize Monitoring physiological state precision agriculture Reflectance regression analysis remote sensing spatial data Stresses surveys Teledetection and vegetation maps Vegetation water content water stress |
title | Assessing canopy PRI from airborne imagery to map water stress in maize |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T10%3A21%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20canopy%20PRI%20from%20airborne%20imagery%20to%20map%20water%20stress%20in%20maize&rft.jtitle=ISPRS%20journal%20of%20photogrammetry%20and%20remote%20sensing&rft.au=Rossini,%20M.&rft.date=2013-12-01&rft.volume=86&rft.spage=168&rft.epage=177&rft.pages=168-177&rft.issn=0924-2716&rft.eissn=1872-8235&rft_id=info:doi/10.1016/j.isprsjprs.2013.10.002&rft_dat=%3Cproquest_cross%3E1642291986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1513453961&rft_id=info:pmid/&rft_els_id=S0924271613002244&rfr_iscdi=true |