Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer
We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory exper...
Gespeichert in:
Veröffentlicht in: | Ecotoxicology (London) 2014-10, Vol.23 (8), p.1564-1573 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1573 |
---|---|
container_issue | 8 |
container_start_page | 1564 |
container_title | Ecotoxicology (London) |
container_volume | 23 |
creator | Li, Adela J. Leung, Priscilla T. Y. Bao, Vivien W. W. Yi, Andy X. L. Leung, Kenneth M. Y. |
description | We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish
Oryzias melastigma
and the copepod
Tigriopus japonicus
) and 24-h LC50 (for the rotifer
Brachionus
koreanus
), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms. |
doi_str_mv | 10.1007/s10646-014-1297-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642288704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A713749339</galeid><sourcerecordid>A713749339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c547t-2798e4161db1d9087cbad25d7363dc223d9e7ee284df8caf96dd65e9d51cfd943</originalsourceid><addsrcrecordid>eNqNkU1rFjEUhQdR7Gv1B7iRgBsXTs3nZLIsxS8ouKnrkDe56Zs6k4xJBuy_N8NUEUGQLC4kz7mcnNN1Lwm-IBjLd4XggQ89JrwnVMmeP-oOREjWM0zk4-6A1cB6RRU9656VcocxVpLjp90ZFViNUopDl29gXiCbumboHSwQHcSKavoRbKgBCkoe-bRmZNM8p4jsCeZgzYSWNE1rNbGWRqN6AjSbHGIb4Mw3g3wop7dNtcCSHDLRoZxq8JCfd0-8mQq8eJjn3dcP72-uPvXXXz5-vrq87q3gsvZUqhE4GYg7EqfwKO3ROCqcZANzllLmFEgAOnLnR2u8GpwbBCgniPVOcXbevdn3Ljl9X6FUPYdiYZpMhLQWTQZO6ThK_B-oGIaRjUzQhr7-C71r6cT2kY2ijAlMcaMudurWTKBD9KlmY9txW3opgg_t_lISJrliTDUB2QU2p1IyeL3k0AK91wTrrWy9l61b2XorW2-uXz1YWY8t9N-KX-02gO5AaU_xFvIfXv-59ScklLUh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1562335020</pqid></control><display><type>article</type><title>Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Li, Adela J. ; Leung, Priscilla T. Y. ; Bao, Vivien W. W. ; Yi, Andy X. L. ; Leung, Kenneth M. Y.</creator><creatorcontrib>Li, Adela J. ; Leung, Priscilla T. Y. ; Bao, Vivien W. W. ; Yi, Andy X. L. ; Leung, Kenneth M. Y.</creatorcontrib><description>We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish
Oryzias melastigma
and the copepod
Tigriopus japonicus
) and 24-h LC50 (for the rotifer
Brachionus
koreanus
), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.</description><identifier>ISSN: 0963-9292</identifier><identifier>EISSN: 1573-3017</identifier><identifier>DOI: 10.1007/s10646-014-1297-4</identifier><identifier>PMID: 25098775</identifier><identifier>CODEN: ECOTEL</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Acute toxicity ; Analysis ; Animals ; Bioavailability ; Brachionus ; Chemical pollutants ; Chemical pollution ; Chemicals ; Copepoda ; Copepoda - drug effects ; Copper ; Copper compounds ; Copper Sulfate - toxicity ; Earth and Environmental Science ; Ecology ; Ecotoxicology ; Environment ; Environmental Management ; Fish ; Larva - drug effects ; Lethal Dose 50 ; Low temperature ; Marine ; Marine fish ; Marine pollution ; Models, Theoretical ; Organometallic Compounds - toxicity ; Organotin Compounds - toxicity ; Oryzias ; Oryzias latipes ; Oryzias melastigma ; Physiological aspects ; Pollutants ; Pyridines - toxicity ; Rotifera ; Rotifera - drug effects ; Seawater - chemistry ; Speciation ; Temperature ; Tigriopus japonicus ; Toxicity ; Toxicity Tests, Acute ; Trichloroethanes - toxicity ; Uptakes ; Water Pollutants, Chemical - toxicity ; Zooplankton</subject><ispartof>Ecotoxicology (London), 2014-10, Vol.23 (8), p.1564-1573</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>COPYRIGHT 2014 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c547t-2798e4161db1d9087cbad25d7363dc223d9e7ee284df8caf96dd65e9d51cfd943</citedby><cites>FETCH-LOGICAL-c547t-2798e4161db1d9087cbad25d7363dc223d9e7ee284df8caf96dd65e9d51cfd943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10646-014-1297-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10646-014-1297-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25098775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Adela J.</creatorcontrib><creatorcontrib>Leung, Priscilla T. Y.</creatorcontrib><creatorcontrib>Bao, Vivien W. W.</creatorcontrib><creatorcontrib>Yi, Andy X. L.</creatorcontrib><creatorcontrib>Leung, Kenneth M. Y.</creatorcontrib><title>Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer</title><title>Ecotoxicology (London)</title><addtitle>Ecotoxicology</addtitle><addtitle>Ecotoxicology</addtitle><description>We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish
Oryzias melastigma
and the copepod
Tigriopus japonicus
) and 24-h LC50 (for the rotifer
Brachionus
koreanus
), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.</description><subject>Acute toxicity</subject><subject>Analysis</subject><subject>Animals</subject><subject>Bioavailability</subject><subject>Brachionus</subject><subject>Chemical pollutants</subject><subject>Chemical pollution</subject><subject>Chemicals</subject><subject>Copepoda</subject><subject>Copepoda - drug effects</subject><subject>Copper</subject><subject>Copper compounds</subject><subject>Copper Sulfate - toxicity</subject><subject>Earth and Environmental Science</subject><subject>Ecology</subject><subject>Ecotoxicology</subject><subject>Environment</subject><subject>Environmental Management</subject><subject>Fish</subject><subject>Larva - drug effects</subject><subject>Lethal Dose 50</subject><subject>Low temperature</subject><subject>Marine</subject><subject>Marine fish</subject><subject>Marine pollution</subject><subject>Models, Theoretical</subject><subject>Organometallic Compounds - toxicity</subject><subject>Organotin Compounds - toxicity</subject><subject>Oryzias</subject><subject>Oryzias latipes</subject><subject>Oryzias melastigma</subject><subject>Physiological aspects</subject><subject>Pollutants</subject><subject>Pyridines - toxicity</subject><subject>Rotifera</subject><subject>Rotifera - drug effects</subject><subject>Seawater - chemistry</subject><subject>Speciation</subject><subject>Temperature</subject><subject>Tigriopus japonicus</subject><subject>Toxicity</subject><subject>Toxicity Tests, Acute</subject><subject>Trichloroethanes - toxicity</subject><subject>Uptakes</subject><subject>Water Pollutants, Chemical - toxicity</subject><subject>Zooplankton</subject><issn>0963-9292</issn><issn>1573-3017</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkU1rFjEUhQdR7Gv1B7iRgBsXTs3nZLIsxS8ouKnrkDe56Zs6k4xJBuy_N8NUEUGQLC4kz7mcnNN1Lwm-IBjLd4XggQ89JrwnVMmeP-oOREjWM0zk4-6A1cB6RRU9656VcocxVpLjp90ZFViNUopDl29gXiCbumboHSwQHcSKavoRbKgBCkoe-bRmZNM8p4jsCeZgzYSWNE1rNbGWRqN6AjSbHGIb4Mw3g3wop7dNtcCSHDLRoZxq8JCfd0-8mQq8eJjn3dcP72-uPvXXXz5-vrq87q3gsvZUqhE4GYg7EqfwKO3ROCqcZANzllLmFEgAOnLnR2u8GpwbBCgniPVOcXbevdn3Ljl9X6FUPYdiYZpMhLQWTQZO6ThK_B-oGIaRjUzQhr7-C71r6cT2kY2ijAlMcaMudurWTKBD9KlmY9txW3opgg_t_lISJrliTDUB2QU2p1IyeL3k0AK91wTrrWy9l61b2XorW2-uXz1YWY8t9N-KX-02gO5AaU_xFvIfXv-59ScklLUh</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>Li, Adela J.</creator><creator>Leung, Priscilla T. Y.</creator><creator>Bao, Vivien W. W.</creator><creator>Yi, Andy X. L.</creator><creator>Leung, Kenneth M. Y.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7SN</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>H95</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20141001</creationdate><title>Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer</title><author>Li, Adela J. ; Leung, Priscilla T. Y. ; Bao, Vivien W. W. ; Yi, Andy X. L. ; Leung, Kenneth M. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c547t-2798e4161db1d9087cbad25d7363dc223d9e7ee284df8caf96dd65e9d51cfd943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acute toxicity</topic><topic>Analysis</topic><topic>Animals</topic><topic>Bioavailability</topic><topic>Brachionus</topic><topic>Chemical pollutants</topic><topic>Chemical pollution</topic><topic>Chemicals</topic><topic>Copepoda</topic><topic>Copepoda - drug effects</topic><topic>Copper</topic><topic>Copper compounds</topic><topic>Copper Sulfate - toxicity</topic><topic>Earth and Environmental Science</topic><topic>Ecology</topic><topic>Ecotoxicology</topic><topic>Environment</topic><topic>Environmental Management</topic><topic>Fish</topic><topic>Larva - drug effects</topic><topic>Lethal Dose 50</topic><topic>Low temperature</topic><topic>Marine</topic><topic>Marine fish</topic><topic>Marine pollution</topic><topic>Models, Theoretical</topic><topic>Organometallic Compounds - toxicity</topic><topic>Organotin Compounds - toxicity</topic><topic>Oryzias</topic><topic>Oryzias latipes</topic><topic>Oryzias melastigma</topic><topic>Physiological aspects</topic><topic>Pollutants</topic><topic>Pyridines - toxicity</topic><topic>Rotifera</topic><topic>Rotifera - drug effects</topic><topic>Seawater - chemistry</topic><topic>Speciation</topic><topic>Temperature</topic><topic>Tigriopus japonicus</topic><topic>Toxicity</topic><topic>Toxicity Tests, Acute</topic><topic>Trichloroethanes - toxicity</topic><topic>Uptakes</topic><topic>Water Pollutants, Chemical - toxicity</topic><topic>Zooplankton</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Adela J.</creatorcontrib><creatorcontrib>Leung, Priscilla T. Y.</creatorcontrib><creatorcontrib>Bao, Vivien W. W.</creatorcontrib><creatorcontrib>Yi, Andy X. L.</creatorcontrib><creatorcontrib>Leung, Kenneth M. Y.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Ecotoxicology (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Adela J.</au><au>Leung, Priscilla T. Y.</au><au>Bao, Vivien W. W.</au><au>Yi, Andy X. L.</au><au>Leung, Kenneth M. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer</atitle><jtitle>Ecotoxicology (London)</jtitle><stitle>Ecotoxicology</stitle><addtitle>Ecotoxicology</addtitle><date>2014-10-01</date><risdate>2014</risdate><volume>23</volume><issue>8</issue><spage>1564</spage><epage>1573</epage><pages>1564-1573</pages><issn>0963-9292</issn><eissn>1573-3017</eissn><coden>ECOTEL</coden><abstract>We hypothesize that chemical toxicity to marine ectotherms is the lowest at an optimum temperature (OT) and it exacerbates with increasing or decreasing temperature from the OT. This study aimed to verify this hypothetical temperature-dependent chemical toxicity (TDCT) model through laboratory experiments. Acute toxicity over a range of temperatures was tested on four commonly used chemicals to three marine ectotherms. Our results confirmed that toxicities, in terms of 96-h LC50 (median lethal concentration; for the marine medaka fish
Oryzias melastigma
and the copepod
Tigriopus japonicus
) and 24-h LC50 (for the rotifer
Brachionus
koreanus
), were highly temperature-dependent, and varied between test species and between study chemicals. The LC50 value of the fish peaked at 20 °C for copper (II) sulphate pentahydrate and triphenyltin chloride, and at 25 °C for dichlorophenyltrichloroethane and copper pyrithione, and decreased with temperature increase or decrease from the peak (i.e., OT). However, LC50 values of the copepod and the rotifer generally showed a negative relationship with temperature across all test chemicals. Both copepod and rotifer entered dormancy at the lowest temperature of 4 °C. Such metabolic depression responses in these zooplanktons could reduce their uptake of the chemical and hence minimize the chemical toxicity at low temperatures. Our TDCT model is supported by the fish data only, whereas a simple linear model fits better to the zooplankton data. Such species-specific TDCT patterns may be jointly ascribed to temperature-mediated changes in (1) the physiological response and susceptibility of the marine ectotherms to the chemical, (2) speciation and bioavailability of the chemical, and (3) toxicokinetics of the chemical in the organisms.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>25098775</pmid><doi>10.1007/s10646-014-1297-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0963-9292 |
ispartof | Ecotoxicology (London), 2014-10, Vol.23 (8), p.1564-1573 |
issn | 0963-9292 1573-3017 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642288704 |
source | MEDLINE; SpringerLink Journals |
subjects | Acute toxicity Analysis Animals Bioavailability Brachionus Chemical pollutants Chemical pollution Chemicals Copepoda Copepoda - drug effects Copper Copper compounds Copper Sulfate - toxicity Earth and Environmental Science Ecology Ecotoxicology Environment Environmental Management Fish Larva - drug effects Lethal Dose 50 Low temperature Marine Marine fish Marine pollution Models, Theoretical Organometallic Compounds - toxicity Organotin Compounds - toxicity Oryzias Oryzias latipes Oryzias melastigma Physiological aspects Pollutants Pyridines - toxicity Rotifera Rotifera - drug effects Seawater - chemistry Speciation Temperature Tigriopus japonicus Toxicity Toxicity Tests, Acute Trichloroethanes - toxicity Uptakes Water Pollutants, Chemical - toxicity Zooplankton |
title | Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T08%3A16%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-dependent%20toxicities%20of%20four%20common%20chemical%20pollutants%20to%20the%20marine%20medaka%20fish,%20copepod%20and%20rotifer&rft.jtitle=Ecotoxicology%20(London)&rft.au=Li,%20Adela%20J.&rft.date=2014-10-01&rft.volume=23&rft.issue=8&rft.spage=1564&rft.epage=1573&rft.pages=1564-1573&rft.issn=0963-9292&rft.eissn=1573-3017&rft.coden=ECOTEL&rft_id=info:doi/10.1007/s10646-014-1297-4&rft_dat=%3Cgale_proqu%3EA713749339%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1562335020&rft_id=info:pmid/25098775&rft_galeid=A713749339&rfr_iscdi=true |