An accurate numerical method for solving the linear fractional Klein-Gordon equation

In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2014-11, Vol.37 (18), p.2972-2979
Hauptverfasser: Khader, M.M., Kumar, Sunil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2979
container_issue 18
container_start_page 2972
container_title Mathematical methods in the applied sciences
container_volume 37
creator Khader, M.M.
Kumar, Sunil
description In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642288205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3499309341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4345-4cab4ca099b385b0c2659032e1f67ae90d74f5df13a90069e62ab778b25bf46a3</originalsourceid><addsrcrecordid>eNp10EtLxDAQB_AgCq4P8CMEvHipTl59HJdFV1kfF194CWl2qtG20aRV99vbRVEUPAwDw49h5k_IDoN9BsAPmsbsCxBqhYwYFEXCZJaukhGwDBLJmVwnGzE-AkDOGB-Ry3FLjbV9MB3Stm8wOGtq2mD34Oe08oFGX7-69p52D0hr16IJtArGds63A5zV6Npk6sPctxRferOcb5G1ytQRt7_6Jrk6OrycHCenF9OTyfg0sVJIlUhryqGGK0uRqxIsT1UBgiOr0sxgAfNMVmpeMWEKgLTAlJsyy_KSq7KSqRGbZO9z73PwLz3GTjcuWqxr06Lvo2ap5DzPOaiB7v6hj74PwwdLxZXKBQPxs9AGH2PASj8H15iw0Az0Ml49xKuX8Q40-aRvrsbFv06fnY1_exc7fP_2JjzpNBOZ0jfnU303gfPZ5JrpW_EB2--JuQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625583103</pqid></control><display><type>article</type><title>An accurate numerical method for solving the linear fractional Klein-Gordon equation</title><source>Wiley Online Library</source><creator>Khader, M.M. ; Kumar, Sunil</creator><creatorcontrib>Khader, M.M. ; Kumar, Sunil</creatorcontrib><description>In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3035</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Blackwell Publishing Ltd</publisher><subject>Approximation ; Chebyshev collocation method ; Convergence ; convergence analysis ; Derivatives ; Finite difference method ; Fractional Klein-Gordon equation ; Klein-Gordon equation ; Mathematical analysis ; Mathematical models ; Numerical analysis</subject><ispartof>Mathematical methods in the applied sciences, 2014-11, Vol.37 (18), p.2972-2979</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4345-4cab4ca099b385b0c2659032e1f67ae90d74f5df13a90069e62ab778b25bf46a3</citedby><cites>FETCH-LOGICAL-c4345-4cab4ca099b385b0c2659032e1f67ae90d74f5df13a90069e62ab778b25bf46a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmma.3035$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmma.3035$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Khader, M.M.</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><title>An accurate numerical method for solving the linear fractional Klein-Gordon equation</title><title>Mathematical methods in the applied sciences</title><addtitle>Math. Meth. Appl. Sci</addtitle><description>In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Approximation</subject><subject>Chebyshev collocation method</subject><subject>Convergence</subject><subject>convergence analysis</subject><subject>Derivatives</subject><subject>Finite difference method</subject><subject>Fractional Klein-Gordon equation</subject><subject>Klein-Gordon equation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10EtLxDAQB_AgCq4P8CMEvHipTl59HJdFV1kfF194CWl2qtG20aRV99vbRVEUPAwDw49h5k_IDoN9BsAPmsbsCxBqhYwYFEXCZJaukhGwDBLJmVwnGzE-AkDOGB-Ry3FLjbV9MB3Stm8wOGtq2mD34Oe08oFGX7-69p52D0hr16IJtArGds63A5zV6Npk6sPctxRferOcb5G1ytQRt7_6Jrk6OrycHCenF9OTyfg0sVJIlUhryqGGK0uRqxIsT1UBgiOr0sxgAfNMVmpeMWEKgLTAlJsyy_KSq7KSqRGbZO9z73PwLz3GTjcuWqxr06Lvo2ap5DzPOaiB7v6hj74PwwdLxZXKBQPxs9AGH2PASj8H15iw0Az0Ml49xKuX8Q40-aRvrsbFv06fnY1_exc7fP_2JjzpNBOZ0jfnU303gfPZ5JrpW_EB2--JuQ</recordid><startdate>201411</startdate><enddate>201411</enddate><creator>Khader, M.M.</creator><creator>Kumar, Sunil</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>201411</creationdate><title>An accurate numerical method for solving the linear fractional Klein-Gordon equation</title><author>Khader, M.M. ; Kumar, Sunil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4345-4cab4ca099b385b0c2659032e1f67ae90d74f5df13a90069e62ab778b25bf46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Chebyshev collocation method</topic><topic>Convergence</topic><topic>convergence analysis</topic><topic>Derivatives</topic><topic>Finite difference method</topic><topic>Fractional Klein-Gordon equation</topic><topic>Klein-Gordon equation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khader, M.M.</creatorcontrib><creatorcontrib>Kumar, Sunil</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khader, M.M.</au><au>Kumar, Sunil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An accurate numerical method for solving the linear fractional Klein-Gordon equation</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><addtitle>Math. Meth. Appl. Sci</addtitle><date>2014-11</date><risdate>2014</risdate><volume>37</volume><issue>18</issue><spage>2972</spage><epage>2979</epage><pages>2972-2979</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mma.3035</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2014-11, Vol.37 (18), p.2972-2979
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_miscellaneous_1642288205
source Wiley Online Library
subjects Approximation
Chebyshev collocation method
Convergence
convergence analysis
Derivatives
Finite difference method
Fractional Klein-Gordon equation
Klein-Gordon equation
Mathematical analysis
Mathematical models
Numerical analysis
title An accurate numerical method for solving the linear fractional Klein-Gordon equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T16%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20accurate%20numerical%20method%20for%20solving%20the%20linear%20fractional%20Klein-Gordon%20equation&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Khader,%20M.M.&rft.date=2014-11&rft.volume=37&rft.issue=18&rft.spage=2972&rft.epage=2979&rft.pages=2972-2979&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3035&rft_dat=%3Cproquest_cross%3E3499309341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625583103&rft_id=info:pmid/&rfr_iscdi=true