An accurate numerical method for solving the linear fractional Klein-Gordon equation

In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2014-11, Vol.37 (18), p.2972-2979
Hauptverfasser: Khader, M.M., Kumar, Sunil
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, an implementation of an efficient numerical method for solving the linear fractional Klein–Gordon equation (LFKGE) is introduced. The fractional derivative is described in the Caputo sense. The method is based upon a combination between the properties of the Chebyshev approximations and finite difference method (FDM). The proposed method reduces LFKGE to a system of ODEs, which is solved using FDM. Special attention is given to study the convergence analysis and deduce an error upper bound of the proposed method. Numerical example is given to show the validity and the accuracy of the proposed algorithm. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.3035