Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type

Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean‐sea ice‐atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Atmospheres 2014-10, Vol.119 (20), p.11,593-11,612
Hauptverfasser: Barber, D. G., Ehn, J. K., Pućko, M., Rysgaard, S., Deming, J. W., Bowman, J. S., Papakyriakou, T., Galley, R. J., Søgaard, D. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11,612
container_issue 20
container_start_page 11,593
container_title Journal of geophysical research. Atmospheres
container_volume 119
creator Barber, D. G.
Ehn, J. K.
Pućko, M.
Rysgaard, S.
Deming, J. W.
Bowman, J. S.
Papakyriakou, T.
Galley, R. J.
Søgaard, D. H.
description Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean‐sea ice‐atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near‐surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg−1 in frost flowers and 1061 µmol kg−1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine‐wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition. Key Points Detailed field observations confirm model of frost flower formationIkaite formation in frost flowers and the surface slush layer is significantBacterial density and taxa in frost flowers related to brine migration
doi_str_mv 10.1002/2014JD021736
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642288020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642288020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4789-20add73c464a279ad0aaf0fb9a480a5c4b491cccb9b7b5d43dce45948fbcc88c3</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhpfSQEOaW36AoJccvK2-V8ot5MOtcVISHBJ6EdpZra10vXKkNa7_fWVcQsipc5lh5nlfmJmiOCH4K8GYfqOY8MklpqRi8kNxSInUpdJafnytq6dPxXFKzziHwowLfli8XMeQBtR2YeNiQqFH27Du5-g8wuABJWeRB3eGZguHoPNLm7sjBAu39GC7EbJ9g3IZQ-1th5Kf977Nkx4cCm2eIrd0ce6zY7ZBw3blPhcHre2SO_6Xj4qH66vZxfdy-nP84-J8WgKvlC4ptk1TMeCSW1pp22BrW9zW2nKFrQBec00AoNZ1VYuGswYcF5qrtgZQCthRcbr3XcXwsnZpMEufwHWd7V1YJ0Mkp1QpTPF_oExkjosd-uUd-hzWsc-L7AwFk1gLmim2pza-c1uzivlwcWsINrtXmbevMpPx_aUgUuqsKvcqnwb351Vl428jK1YJ83g7Nr_UhNKbu5m5YX8BEJuWqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1645360952</pqid></control><display><type>article</type><title>Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type</title><source>Wiley Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Barber, D. G. ; Ehn, J. K. ; Pućko, M. ; Rysgaard, S. ; Deming, J. W. ; Bowman, J. S. ; Papakyriakou, T. ; Galley, R. J. ; Søgaard, D. H.</creator><creatorcontrib>Barber, D. G. ; Ehn, J. K. ; Pućko, M. ; Rysgaard, S. ; Deming, J. W. ; Bowman, J. S. ; Papakyriakou, T. ; Galley, R. J. ; Søgaard, D. H.</creatorcontrib><description>Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean‐sea ice‐atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near‐surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg−1 in frost flowers and 1061 µmol kg−1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine‐wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition. Key Points Detailed field observations confirm model of frost flower formationIkaite formation in frost flowers and the surface slush layer is significantBacterial density and taxa in frost flowers related to brine migration</description><identifier>ISSN: 2169-897X</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1002/2014JD021736</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Arctic Ocean ; Atmosphere ; Atmospheric chemistry ; Bacteria ; Boundary layers ; Brines ; Carbon dioxide ; Crystals ; Density ; Flowers ; Frost ; frost flowers ; Geophysics ; Ice ; Marine ; Microbiology ; Ocean-atmosphere interaction ; polynyas ; Ponds ; Salinity ; Salt water ; Sea ice ; Seawater ; Slush ; Supersaturation ; Temperature gradients</subject><ispartof>Journal of geophysical research. Atmospheres, 2014-10, Vol.119 (20), p.11,593-11,612</ispartof><rights>2014. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4789-20add73c464a279ad0aaf0fb9a480a5c4b491cccb9b7b5d43dce45948fbcc88c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2014JD021736$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2014JD021736$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Barber, D. G.</creatorcontrib><creatorcontrib>Ehn, J. K.</creatorcontrib><creatorcontrib>Pućko, M.</creatorcontrib><creatorcontrib>Rysgaard, S.</creatorcontrib><creatorcontrib>Deming, J. W.</creatorcontrib><creatorcontrib>Bowman, J. S.</creatorcontrib><creatorcontrib>Papakyriakou, T.</creatorcontrib><creatorcontrib>Galley, R. J.</creatorcontrib><creatorcontrib>Søgaard, D. H.</creatorcontrib><title>Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type</title><title>Journal of geophysical research. Atmospheres</title><addtitle>J. Geophys. Res. Atmos</addtitle><description>Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean‐sea ice‐atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near‐surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg−1 in frost flowers and 1061 µmol kg−1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine‐wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition. Key Points Detailed field observations confirm model of frost flower formationIkaite formation in frost flowers and the surface slush layer is significantBacterial density and taxa in frost flowers related to brine migration</description><subject>Arctic Ocean</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Bacteria</subject><subject>Boundary layers</subject><subject>Brines</subject><subject>Carbon dioxide</subject><subject>Crystals</subject><subject>Density</subject><subject>Flowers</subject><subject>Frost</subject><subject>frost flowers</subject><subject>Geophysics</subject><subject>Ice</subject><subject>Marine</subject><subject>Microbiology</subject><subject>Ocean-atmosphere interaction</subject><subject>polynyas</subject><subject>Ponds</subject><subject>Salinity</subject><subject>Salt water</subject><subject>Sea ice</subject><subject>Seawater</subject><subject>Slush</subject><subject>Supersaturation</subject><subject>Temperature gradients</subject><issn>2169-897X</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQhpfSQEOaW36AoJccvK2-V8ot5MOtcVISHBJ6EdpZra10vXKkNa7_fWVcQsipc5lh5nlfmJmiOCH4K8GYfqOY8MklpqRi8kNxSInUpdJafnytq6dPxXFKzziHwowLfli8XMeQBtR2YeNiQqFH27Du5-g8wuABJWeRB3eGZguHoPNLm7sjBAu39GC7EbJ9g3IZQ-1th5Kf977Nkx4cCm2eIrd0ce6zY7ZBw3blPhcHre2SO_6Xj4qH66vZxfdy-nP84-J8WgKvlC4ptk1TMeCSW1pp22BrW9zW2nKFrQBec00AoNZ1VYuGswYcF5qrtgZQCthRcbr3XcXwsnZpMEufwHWd7V1YJ0Mkp1QpTPF_oExkjosd-uUd-hzWsc-L7AwFk1gLmim2pza-c1uzivlwcWsINrtXmbevMpPx_aUgUuqsKvcqnwb351Vl428jK1YJ83g7Nr_UhNKbu5m5YX8BEJuWqA</recordid><startdate>20141027</startdate><enddate>20141027</enddate><creator>Barber, D. G.</creator><creator>Ehn, J. K.</creator><creator>Pućko, M.</creator><creator>Rysgaard, S.</creator><creator>Deming, J. W.</creator><creator>Bowman, J. S.</creator><creator>Papakyriakou, T.</creator><creator>Galley, R. J.</creator><creator>Søgaard, D. H.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>7T7</scope><scope>P64</scope></search><sort><creationdate>20141027</creationdate><title>Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type</title><author>Barber, D. G. ; Ehn, J. K. ; Pućko, M. ; Rysgaard, S. ; Deming, J. W. ; Bowman, J. S. ; Papakyriakou, T. ; Galley, R. J. ; Søgaard, D. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4789-20add73c464a279ad0aaf0fb9a480a5c4b491cccb9b7b5d43dce45948fbcc88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Arctic Ocean</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Bacteria</topic><topic>Boundary layers</topic><topic>Brines</topic><topic>Carbon dioxide</topic><topic>Crystals</topic><topic>Density</topic><topic>Flowers</topic><topic>Frost</topic><topic>frost flowers</topic><topic>Geophysics</topic><topic>Ice</topic><topic>Marine</topic><topic>Microbiology</topic><topic>Ocean-atmosphere interaction</topic><topic>polynyas</topic><topic>Ponds</topic><topic>Salinity</topic><topic>Salt water</topic><topic>Sea ice</topic><topic>Seawater</topic><topic>Slush</topic><topic>Supersaturation</topic><topic>Temperature gradients</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barber, D. G.</creatorcontrib><creatorcontrib>Ehn, J. K.</creatorcontrib><creatorcontrib>Pućko, M.</creatorcontrib><creatorcontrib>Rysgaard, S.</creatorcontrib><creatorcontrib>Deming, J. W.</creatorcontrib><creatorcontrib>Bowman, J. S.</creatorcontrib><creatorcontrib>Papakyriakou, T.</creatorcontrib><creatorcontrib>Galley, R. J.</creatorcontrib><creatorcontrib>Søgaard, D. H.</creatorcontrib><collection>Istex</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of geophysical research. Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barber, D. G.</au><au>Ehn, J. K.</au><au>Pućko, M.</au><au>Rysgaard, S.</au><au>Deming, J. W.</au><au>Bowman, J. S.</au><au>Papakyriakou, T.</au><au>Galley, R. J.</au><au>Søgaard, D. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type</atitle><jtitle>Journal of geophysical research. Atmospheres</jtitle><addtitle>J. Geophys. Res. Atmos</addtitle><date>2014-10-27</date><risdate>2014</risdate><volume>119</volume><issue>20</issue><spage>11,593</spage><epage>11,612</epage><pages>11,593-11,612</pages><issn>2169-897X</issn><eissn>2169-8996</eissn><abstract>Ongoing changes in Arctic sea ice are increasing the spatial and temporal range of young sea ice types over which frost flowers can occur, yet the significance of frost flowers to ocean‐sea ice‐atmosphere exchange processes remains poorly understood. Frost flowers form when moisture from seawater becomes available to a cold atmosphere and surface winds are low, allowing for supersaturation of the near‐surface boundary layer. Ice grown in a pond cut in young ice at the mouth of Young Sound, NE Greenland, in March 2012, showed that expanding frost flower clusters began forming as soon as the ice formed. The new ice and frost flowers dramatically changed the radiative and thermal environment. The frost flowers were about 5°C colder than the brine surface, with an approximately linear temperature gradient from their base to their upper tips. Salinity and δ18O values indicated that frost flowers primarily originated from the surface brine skim. Ikaite crystals were observed to form within an hour in both frost flowers and the thin pond ice. Average ikaite concentrations were 1013 µmol kg−1 in frost flowers and 1061 µmol kg−1 in the surface slush layer. Chamber flux measurements confirmed an efflux of CO2 at the brine‐wetted sea ice surface, in line with expectations from the brine chemistry. Bacteria concentrations generally increased with salinity in frost flowers and the surface slush layer. Bacterial densities and taxa indicated that a selective process occurred at the ice surface and confirmed the general pattern of primary oceanic origin versus negligible atmospheric deposition. Key Points Detailed field observations confirm model of frost flower formationIkaite formation in frost flowers and the surface slush layer is significantBacterial density and taxa in frost flowers related to brine migration</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2014JD021736</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-897X
ispartof Journal of geophysical research. Atmospheres, 2014-10, Vol.119 (20), p.11,593-11,612
issn 2169-897X
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1642288020
source Wiley Journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Arctic Ocean
Atmosphere
Atmospheric chemistry
Bacteria
Boundary layers
Brines
Carbon dioxide
Crystals
Density
Flowers
Frost
frost flowers
Geophysics
Ice
Marine
Microbiology
Ocean-atmosphere interaction
polynyas
Ponds
Salinity
Salt water
Sea ice
Seawater
Slush
Supersaturation
Temperature gradients
title Frost flowers on young Arctic sea ice: The climatic, chemical, and microbial significance of an emerging ice type
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frost%20flowers%20on%20young%20Arctic%20sea%20ice:%20The%20climatic,%20chemical,%20and%20microbial%20significance%20of%20an%20emerging%20ice%20type&rft.jtitle=Journal%20of%20geophysical%20research.%20Atmospheres&rft.au=Barber,%20D.%20G.&rft.date=2014-10-27&rft.volume=119&rft.issue=20&rft.spage=11,593&rft.epage=11,612&rft.pages=11,593-11,612&rft.issn=2169-897X&rft.eissn=2169-8996&rft_id=info:doi/10.1002/2014JD021736&rft_dat=%3Cproquest_wiley%3E1642288020%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1645360952&rft_id=info:pmid/&rfr_iscdi=true