Robust output regulation and the preservation of polynomial closed-loop stability

SUMMARYIn this paper, we study the robust output regulation problem for distributed parameter systems with infinite‐dimensional exosystems. The main purpose of this paper is to demonstrate the several advantages of using a controller that achieves polynomial closed‐loop stability, instead of a one s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2014-12, Vol.24 (18), p.3409-3436
Hauptverfasser: Paunonen, Lassi, Pohjolainen, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3436
container_issue 18
container_start_page 3409
container_title International journal of robust and nonlinear control
container_volume 24
creator Paunonen, Lassi
Pohjolainen, S.
description SUMMARYIn this paper, we study the robust output regulation problem for distributed parameter systems with infinite‐dimensional exosystems. The main purpose of this paper is to demonstrate the several advantages of using a controller that achieves polynomial closed‐loop stability, instead of a one stabilizing the closed‐loop system strongly. In particular, the most serious unresolved issue related to strongly stabilizing controllers is that they do not possess any known robustness properties. In this paper, we apply recent results on the robustness of polynomial stability of semigroups to show that, on the other hand, many controllers achieving polynomial closed‐loop stability are robust with respect to large and easily identifiable classes of perturbations to the parameters of the plant. We construct an observer based feedback controller that stabilizes the closed‐loop system polynomially and solves the robust output regulation problem. Subsequently, we derive concrete conditions for finite rank perturbations of the plant's parameters to preserve the closed‐loop stability and the output regulation property. The theoretical results are illustrated with an example where we consider the problem of robust output tracking for a one‐dimensional heat equation.Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/rnc.3064
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642287571</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642287571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3974-7a05a7fc868ca214ea7ce39852a88a27facd21382aa58cd8fa348a755a86c1e23</originalsourceid><addsrcrecordid>eNp10N9LwzAQB_AiCs4p-CcUfPGlMz-aJn2UolMYE8fEx3BLU-3Mmpqkav97OyaKgk933H04jm8UnWI0wQiRC9eoCUVZuheNMMrzBBOa72_7NE9ETuhhdOT9GqFhR9JRdL-wq86H2Hah7ULs9FNnINS2iaEp4_Cs49Zpr93bbmiruLWmb-ymBhMrY70uE2NtG_sAq9rUoT-ODiowXp981XH0cH21LG6S2d30tricJYrmPE04IAa8UiITCghONXClaS4YASGA8ApUSTAVBIAJVYoKaCqAMwYiU1gTOo7Od3dbZ1877YPc1F5pY6DRtvMSZykhgjOOB3r2h65t55rhu0ERRnKcUvRzUDnrvdOVbF29AddLjOQ2WzlkK7fZDjTZ0ffa6P5fJxfz4revfdAf3x7ci8w45Uw-zqdyyXjB7tlMZvQTGImKAg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1625291430</pqid></control><display><type>article</type><title>Robust output regulation and the preservation of polynomial closed-loop stability</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Paunonen, Lassi ; Pohjolainen, S.</creator><creatorcontrib>Paunonen, Lassi ; Pohjolainen, S.</creatorcontrib><description>SUMMARYIn this paper, we study the robust output regulation problem for distributed parameter systems with infinite‐dimensional exosystems. The main purpose of this paper is to demonstrate the several advantages of using a controller that achieves polynomial closed‐loop stability, instead of a one stabilizing the closed‐loop system strongly. In particular, the most serious unresolved issue related to strongly stabilizing controllers is that they do not possess any known robustness properties. In this paper, we apply recent results on the robustness of polynomial stability of semigroups to show that, on the other hand, many controllers achieving polynomial closed‐loop stability are robust with respect to large and easily identifiable classes of perturbations to the parameters of the plant. We construct an observer based feedback controller that stabilizes the closed‐loop system polynomially and solves the robust output regulation problem. Subsequently, we derive concrete conditions for finite rank perturbations of the plant's parameters to preserve the closed‐loop stability and the output regulation property. The theoretical results are illustrated with an example where we consider the problem of robust output tracking for a one‐dimensional heat equation.Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.3064</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Control ; Control systems ; distributed parameter system ; Feedback ; internal model principle ; Perturbation ; polynomial stability ; Polynomials ; Preserves ; robust output regulation ; Robustness ; Stability</subject><ispartof>International journal of robust and nonlinear control, 2014-12, Vol.24 (18), p.3409-3436</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3974-7a05a7fc868ca214ea7ce39852a88a27facd21382aa58cd8fa348a755a86c1e23</citedby><cites>FETCH-LOGICAL-c3974-7a05a7fc868ca214ea7ce39852a88a27facd21382aa58cd8fa348a755a86c1e23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.3064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.3064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Paunonen, Lassi</creatorcontrib><creatorcontrib>Pohjolainen, S.</creatorcontrib><title>Robust output regulation and the preservation of polynomial closed-loop stability</title><title>International journal of robust and nonlinear control</title><addtitle>Int. J. Robust. Nonlinear Control</addtitle><description>SUMMARYIn this paper, we study the robust output regulation problem for distributed parameter systems with infinite‐dimensional exosystems. The main purpose of this paper is to demonstrate the several advantages of using a controller that achieves polynomial closed‐loop stability, instead of a one stabilizing the closed‐loop system strongly. In particular, the most serious unresolved issue related to strongly stabilizing controllers is that they do not possess any known robustness properties. In this paper, we apply recent results on the robustness of polynomial stability of semigroups to show that, on the other hand, many controllers achieving polynomial closed‐loop stability are robust with respect to large and easily identifiable classes of perturbations to the parameters of the plant. We construct an observer based feedback controller that stabilizes the closed‐loop system polynomially and solves the robust output regulation problem. Subsequently, we derive concrete conditions for finite rank perturbations of the plant's parameters to preserve the closed‐loop stability and the output regulation property. The theoretical results are illustrated with an example where we consider the problem of robust output tracking for a one‐dimensional heat equation.Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Control</subject><subject>Control systems</subject><subject>distributed parameter system</subject><subject>Feedback</subject><subject>internal model principle</subject><subject>Perturbation</subject><subject>polynomial stability</subject><subject>Polynomials</subject><subject>Preserves</subject><subject>robust output regulation</subject><subject>Robustness</subject><subject>Stability</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10N9LwzAQB_AiCs4p-CcUfPGlMz-aJn2UolMYE8fEx3BLU-3Mmpqkav97OyaKgk933H04jm8UnWI0wQiRC9eoCUVZuheNMMrzBBOa72_7NE9ETuhhdOT9GqFhR9JRdL-wq86H2Hah7ULs9FNnINS2iaEp4_Cs49Zpr93bbmiruLWmb-ymBhMrY70uE2NtG_sAq9rUoT-ODiowXp981XH0cH21LG6S2d30tricJYrmPE04IAa8UiITCghONXClaS4YASGA8ApUSTAVBIAJVYoKaCqAMwYiU1gTOo7Od3dbZ1877YPc1F5pY6DRtvMSZykhgjOOB3r2h65t55rhu0ERRnKcUvRzUDnrvdOVbF29AddLjOQ2WzlkK7fZDjTZ0ffa6P5fJxfz4revfdAf3x7ci8w45Uw-zqdyyXjB7tlMZvQTGImKAg</recordid><startdate>201412</startdate><enddate>201412</enddate><creator>Paunonen, Lassi</creator><creator>Pohjolainen, S.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201412</creationdate><title>Robust output regulation and the preservation of polynomial closed-loop stability</title><author>Paunonen, Lassi ; Pohjolainen, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3974-7a05a7fc868ca214ea7ce39852a88a27facd21382aa58cd8fa348a755a86c1e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Control</topic><topic>Control systems</topic><topic>distributed parameter system</topic><topic>Feedback</topic><topic>internal model principle</topic><topic>Perturbation</topic><topic>polynomial stability</topic><topic>Polynomials</topic><topic>Preserves</topic><topic>robust output regulation</topic><topic>Robustness</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paunonen, Lassi</creatorcontrib><creatorcontrib>Pohjolainen, S.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paunonen, Lassi</au><au>Pohjolainen, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust output regulation and the preservation of polynomial closed-loop stability</atitle><jtitle>International journal of robust and nonlinear control</jtitle><addtitle>Int. J. Robust. Nonlinear Control</addtitle><date>2014-12</date><risdate>2014</risdate><volume>24</volume><issue>18</issue><spage>3409</spage><epage>3436</epage><pages>3409-3436</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>SUMMARYIn this paper, we study the robust output regulation problem for distributed parameter systems with infinite‐dimensional exosystems. The main purpose of this paper is to demonstrate the several advantages of using a controller that achieves polynomial closed‐loop stability, instead of a one stabilizing the closed‐loop system strongly. In particular, the most serious unresolved issue related to strongly stabilizing controllers is that they do not possess any known robustness properties. In this paper, we apply recent results on the robustness of polynomial stability of semigroups to show that, on the other hand, many controllers achieving polynomial closed‐loop stability are robust with respect to large and easily identifiable classes of perturbations to the parameters of the plant. We construct an observer based feedback controller that stabilizes the closed‐loop system polynomially and solves the robust output regulation problem. Subsequently, we derive concrete conditions for finite rank perturbations of the plant's parameters to preserve the closed‐loop stability and the output regulation property. The theoretical results are illustrated with an example where we consider the problem of robust output tracking for a one‐dimensional heat equation.Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/rnc.3064</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2014-12, Vol.24 (18), p.3409-3436
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_miscellaneous_1642287571
source Wiley Online Library Journals Frontfile Complete
subjects Control
Control systems
distributed parameter system
Feedback
internal model principle
Perturbation
polynomial stability
Polynomials
Preserves
robust output regulation
Robustness
Stability
title Robust output regulation and the preservation of polynomial closed-loop stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T04%3A53%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20output%20regulation%20and%20the%20preservation%20of%20polynomial%20closed-loop%20stability&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Paunonen,%20Lassi&rft.date=2014-12&rft.volume=24&rft.issue=18&rft.spage=3409&rft.epage=3436&rft.pages=3409-3436&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.3064&rft_dat=%3Cproquest_cross%3E1642287571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1625291430&rft_id=info:pmid/&rfr_iscdi=true