Prediction of water quality from simple field parameters
Water quality parameters like temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (DO), oil and grease, etc., are calculated from the field while parameters like biological oxygen demand (BOD) and chemical oxygen demand (COD) are interpreted through the labo...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2013-06, Vol.69 (3), p.821-829 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 829 |
---|---|
container_issue | 3 |
container_start_page | 821 |
container_title | Environmental earth sciences |
container_volume | 69 |
creator | Verma, A. K Singh, T. N |
description | Water quality parameters like temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (DO), oil and grease, etc., are calculated from the field while parameters like biological oxygen demand (BOD) and chemical oxygen demand (COD) are interpreted through the laboratory tests. On one hand parameters like temperature, pH, DO, etc., can be accurately measured with the exceeding simplicity, whereas on the other hand calculation of BOD and COD is not only cumbersome but also inaccurate many times. A number of previous researchers have tried to use different empirical methods to predict BOD and COD but these empirical methods have their limitations due to their less versatile application. In this paper, an attempt has been made to calculate BOD and COD from simple field parameters like temperature, pH, DO, TSS, etc., using Artificial Neural Network (ANN) method. Datasets have been obtained from analysis of mine water discharge of one of the mines in Jharia coalfield, Jharkhand, India. 73 data sets were used to establish ANN architecture out of which 58 datasets were used to train the network while 15 datasets for testing the network. The results show encouraging similarity between experimental and predicted values. The RMSE values obtained for the BOD and COD are 0.114 and 0.983 %, respectively. |
doi_str_mv | 10.1007/s12665-012-1967-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642285789</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2984485891</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-f87ed1e991181604d7e7e6a7ff59e3a580bb52ca77fe7221b82a067499a36f4e3</originalsourceid><addsrcrecordid>eNqFkctKBDEQRRtRUNQPcGWDCG5aU3lnKeILBAV1HWp6KkNLP8akB_HvzdCDiAutTRXk3EvlVlEcATsHxsxFAq61qhjwCpw2ld4q9sBqXWnu3Pb3bNlucZjSG8slQDim9wr7FGne1GMz9OUQyg8cKZbvK2yb8bMMcejK1HTLlsrQUDsvlxixo8ykg2InYJvocNP3i9eb65eru-rh8fb-6vKhqqXQYxWsoTmQcwAWNJNzQ4Y0mhCUI4HKstlM8RqNCWQ4h5nlyLSRzqHQQZLYL84m32Uc3leURt81qaa2xZ6GVfKgJedWGev-R6WyiksDPKMnv9C3YRX7_BEPQhkQ1gqWKZioOg4pRQp-GZsO46cH5tfJ-yl5n5P36-S9zprTjTOmGtsQsa-b9C3kRqt8FJs5PnEpP_ULij82-MP8eBIFHDwuYjZ-feYMJGPAhOFSfAFjl5mZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1357138830</pqid></control><display><type>article</type><title>Prediction of water quality from simple field parameters</title><source>Springer Nature - Complete Springer Journals</source><creator>Verma, A. K ; Singh, T. N</creator><creatorcontrib>Verma, A. K ; Singh, T. N</creatorcontrib><description>Water quality parameters like temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (DO), oil and grease, etc., are calculated from the field while parameters like biological oxygen demand (BOD) and chemical oxygen demand (COD) are interpreted through the laboratory tests. On one hand parameters like temperature, pH, DO, etc., can be accurately measured with the exceeding simplicity, whereas on the other hand calculation of BOD and COD is not only cumbersome but also inaccurate many times. A number of previous researchers have tried to use different empirical methods to predict BOD and COD but these empirical methods have their limitations due to their less versatile application. In this paper, an attempt has been made to calculate BOD and COD from simple field parameters like temperature, pH, DO, TSS, etc., using Artificial Neural Network (ANN) method. Datasets have been obtained from analysis of mine water discharge of one of the mines in Jharia coalfield, Jharkhand, India. 73 data sets were used to establish ANN architecture out of which 58 datasets were used to train the network while 15 datasets for testing the network. The results show encouraging similarity between experimental and predicted values. The RMSE values obtained for the BOD and COD are 0.114 and 0.983 %, respectively.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-012-1967-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Acid mine drainage ; Biochemical oxygen demand ; Biogeosciences ; Chemical oxygen demand ; Crack opening displacement ; data collection ; Dissolved oxygen ; Earth and Environmental Science ; Earth science ; Earth Sciences ; Earth, ocean, space ; Engineering and environment geology. Geothermics ; Environmental Science and Engineering ; Exact sciences and technology ; Geochemistry ; Geology ; Grease ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; laboratory techniques ; Laboratory tests ; Learning theory ; Mathematical analysis ; Mine drainage ; Mine wastes ; Mines ; Networks ; Neural networks ; Original Article ; Oxygen ; Oxygen demand ; Pollution, environment geology ; prediction ; temperature ; Terrestrial Pollution ; Total dissolved solids ; Total suspended solids ; Water quality ; Water resources</subject><ispartof>Environmental earth sciences, 2013-06, Vol.69 (3), p.821-829</ispartof><rights>Springer-Verlag 2012</rights><rights>2014 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-f87ed1e991181604d7e7e6a7ff59e3a580bb52ca77fe7221b82a067499a36f4e3</citedby><cites>FETCH-LOGICAL-c436t-f87ed1e991181604d7e7e6a7ff59e3a580bb52ca77fe7221b82a067499a36f4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-012-1967-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-012-1967-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27652998$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Verma, A. K</creatorcontrib><creatorcontrib>Singh, T. N</creatorcontrib><title>Prediction of water quality from simple field parameters</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>Water quality parameters like temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (DO), oil and grease, etc., are calculated from the field while parameters like biological oxygen demand (BOD) and chemical oxygen demand (COD) are interpreted through the laboratory tests. On one hand parameters like temperature, pH, DO, etc., can be accurately measured with the exceeding simplicity, whereas on the other hand calculation of BOD and COD is not only cumbersome but also inaccurate many times. A number of previous researchers have tried to use different empirical methods to predict BOD and COD but these empirical methods have their limitations due to their less versatile application. In this paper, an attempt has been made to calculate BOD and COD from simple field parameters like temperature, pH, DO, TSS, etc., using Artificial Neural Network (ANN) method. Datasets have been obtained from analysis of mine water discharge of one of the mines in Jharia coalfield, Jharkhand, India. 73 data sets were used to establish ANN architecture out of which 58 datasets were used to train the network while 15 datasets for testing the network. The results show encouraging similarity between experimental and predicted values. The RMSE values obtained for the BOD and COD are 0.114 and 0.983 %, respectively.</description><subject>Acid mine drainage</subject><subject>Biochemical oxygen demand</subject><subject>Biogeosciences</subject><subject>Chemical oxygen demand</subject><subject>Crack opening displacement</subject><subject>data collection</subject><subject>Dissolved oxygen</subject><subject>Earth and Environmental Science</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Engineering and environment geology. Geothermics</subject><subject>Environmental Science and Engineering</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Grease</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>laboratory techniques</subject><subject>Laboratory tests</subject><subject>Learning theory</subject><subject>Mathematical analysis</subject><subject>Mine drainage</subject><subject>Mine wastes</subject><subject>Mines</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Oxygen</subject><subject>Oxygen demand</subject><subject>Pollution, environment geology</subject><subject>prediction</subject><subject>temperature</subject><subject>Terrestrial Pollution</subject><subject>Total dissolved solids</subject><subject>Total suspended solids</subject><subject>Water quality</subject><subject>Water resources</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkctKBDEQRRtRUNQPcGWDCG5aU3lnKeILBAV1HWp6KkNLP8akB_HvzdCDiAutTRXk3EvlVlEcATsHxsxFAq61qhjwCpw2ld4q9sBqXWnu3Pb3bNlucZjSG8slQDim9wr7FGne1GMz9OUQyg8cKZbvK2yb8bMMcejK1HTLlsrQUDsvlxixo8ykg2InYJvocNP3i9eb65eru-rh8fb-6vKhqqXQYxWsoTmQcwAWNJNzQ4Y0mhCUI4HKstlM8RqNCWQ4h5nlyLSRzqHQQZLYL84m32Uc3leURt81qaa2xZ6GVfKgJedWGev-R6WyiksDPKMnv9C3YRX7_BEPQhkQ1gqWKZioOg4pRQp-GZsO46cH5tfJ-yl5n5P36-S9zprTjTOmGtsQsa-b9C3kRqt8FJs5PnEpP_ULij82-MP8eBIFHDwuYjZ-feYMJGPAhOFSfAFjl5mZ</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Verma, A. K</creator><creator>Singh, T. N</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7QH</scope><scope>H97</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130601</creationdate><title>Prediction of water quality from simple field parameters</title><author>Verma, A. K ; Singh, T. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-f87ed1e991181604d7e7e6a7ff59e3a580bb52ca77fe7221b82a067499a36f4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acid mine drainage</topic><topic>Biochemical oxygen demand</topic><topic>Biogeosciences</topic><topic>Chemical oxygen demand</topic><topic>Crack opening displacement</topic><topic>data collection</topic><topic>Dissolved oxygen</topic><topic>Earth and Environmental Science</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Engineering and environment geology. Geothermics</topic><topic>Environmental Science and Engineering</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Grease</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>laboratory techniques</topic><topic>Laboratory tests</topic><topic>Learning theory</topic><topic>Mathematical analysis</topic><topic>Mine drainage</topic><topic>Mine wastes</topic><topic>Mines</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Oxygen</topic><topic>Oxygen demand</topic><topic>Pollution, environment geology</topic><topic>prediction</topic><topic>temperature</topic><topic>Terrestrial Pollution</topic><topic>Total dissolved solids</topic><topic>Total suspended solids</topic><topic>Water quality</topic><topic>Water resources</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verma, A. K</creatorcontrib><creatorcontrib>Singh, T. N</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, A. K</au><au>Singh, T. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of water quality from simple field parameters</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2013-06-01</date><risdate>2013</risdate><volume>69</volume><issue>3</issue><spage>821</spage><epage>829</epage><pages>821-829</pages><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>Water quality parameters like temperature, pH, total dissolved solids (TDS), total suspended solids (TSS), dissolved oxygen (DO), oil and grease, etc., are calculated from the field while parameters like biological oxygen demand (BOD) and chemical oxygen demand (COD) are interpreted through the laboratory tests. On one hand parameters like temperature, pH, DO, etc., can be accurately measured with the exceeding simplicity, whereas on the other hand calculation of BOD and COD is not only cumbersome but also inaccurate many times. A number of previous researchers have tried to use different empirical methods to predict BOD and COD but these empirical methods have their limitations due to their less versatile application. In this paper, an attempt has been made to calculate BOD and COD from simple field parameters like temperature, pH, DO, TSS, etc., using Artificial Neural Network (ANN) method. Datasets have been obtained from analysis of mine water discharge of one of the mines in Jharia coalfield, Jharkhand, India. 73 data sets were used to establish ANN architecture out of which 58 datasets were used to train the network while 15 datasets for testing the network. The results show encouraging similarity between experimental and predicted values. The RMSE values obtained for the BOD and COD are 0.114 and 0.983 %, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12665-012-1967-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2013-06, Vol.69 (3), p.821-829 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642285789 |
source | Springer Nature - Complete Springer Journals |
subjects | Acid mine drainage Biochemical oxygen demand Biogeosciences Chemical oxygen demand Crack opening displacement data collection Dissolved oxygen Earth and Environmental Science Earth science Earth Sciences Earth, ocean, space Engineering and environment geology. Geothermics Environmental Science and Engineering Exact sciences and technology Geochemistry Geology Grease Hydrology. Hydrogeology Hydrology/Water Resources laboratory techniques Laboratory tests Learning theory Mathematical analysis Mine drainage Mine wastes Mines Networks Neural networks Original Article Oxygen Oxygen demand Pollution, environment geology prediction temperature Terrestrial Pollution Total dissolved solids Total suspended solids Water quality Water resources |
title | Prediction of water quality from simple field parameters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A54%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20water%20quality%20from%20simple%20field%20parameters&rft.jtitle=Environmental%20earth%20sciences&rft.au=Verma,%20A.%20K&rft.date=2013-06-01&rft.volume=69&rft.issue=3&rft.spage=821&rft.epage=829&rft.pages=821-829&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-012-1967-6&rft_dat=%3Cproquest_cross%3E2984485891%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1357138830&rft_id=info:pmid/&rfr_iscdi=true |