Sahara Slide: Age, initiation, and processes of a giant submarine slide
The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of ∼2000 m. High primary productivity in surface waters drives accumulation of thick fine...
Gespeichert in:
Veröffentlicht in: | Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 7 |
container_start_page | np |
container_title | Geochemistry, geophysics, geosystems : G3 |
container_volume | 11 |
creator | Georgiopoulou, Aggeliki Masson, Douglas G. Wynn, Russell B. Krastel, Sebastian |
description | The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of ∼2000 m. High primary productivity in surface waters drives accumulation of thick fine‐grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large‐scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab‐type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of ∼900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50–60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming. |
doi_str_mv | 10.1029/2010GC003066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642283613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2315586231</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4703-813c0c532bdfa2ea8ed7c89e976285f5a1a3cc70714970d2ecaa713aca42ea9a3</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCn7e_AHBk4etTpImab2tVau4KLjKegtjmmq0265Ni_rv7VIR8aCnyeF5w8wbBLsUDiiw5JABhSwF4CDlSrBBBRMhA6ZWf7zXg03vnwFoJES8EWRTfMIGybR0uT0i40c7Iq5yrcPW1dWIYJWTRVMb6731pC4IkkeHVUt89zDHxlWW-GV0O1grsPR252tuBXdnp7fpeTi5zi7S8STESAEPY8oNGMHZQ14gsxjbXJk4sYmSLBaFQIrcGAWKRomCnFmDqChHg1GvE-Rbwf7wb7_Ua2d9q-fOG1uWWNm685rKiLGYS8r_p4JFPEkkh57u_aLPdddU_SE6lpRyGoPs0WhApqm9b2yhF43rO_jQFPSyf_2z_56zgb-50n78aXWWZadURcudwyHkfGvfv0PYvGipuBJ6dpXp48nl_c2MpfqEfwLx8ZLJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>861131806</pqid></control><display><type>article</type><title>Sahara Slide: Age, initiation, and processes of a giant submarine slide</title><source>Wiley-Blackwell Open Access Titles</source><creator>Georgiopoulou, Aggeliki ; Masson, Douglas G. ; Wynn, Russell B. ; Krastel, Sebastian</creator><creatorcontrib>Georgiopoulou, Aggeliki ; Masson, Douglas G. ; Wynn, Russell B. ; Krastel, Sebastian</creatorcontrib><description>The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of ∼2000 m. High primary productivity in surface waters drives accumulation of thick fine‐grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large‐scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab‐type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of ∼900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50–60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2010GC003066</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Climate change ; Construction ; Continental margins ; Continental slope ; Cores ; debris flow ; Failure ; Geophysics ; Global warming ; Landslides ; Marine geology ; northwest Africa ; Pore pressure ; Porosity ; Sahara Slide ; Sand ; Sea level ; Sea level rise ; Sedimentation rates ; Sediments ; slope instability ; Submarines ; Surface water ; tsunami ; turbidite ; Water depth</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a</ispartof><rights>Copyright 2010 by the American Geophysical Union.</rights><rights>Copyright 2010 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4703-813c0c532bdfa2ea8ed7c89e976285f5a1a3cc70714970d2ecaa713aca42ea9a3</citedby><cites>FETCH-LOGICAL-a4703-813c0c532bdfa2ea8ed7c89e976285f5a1a3cc70714970d2ecaa713aca42ea9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2010GC003066$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2010GC003066$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,11543,27905,27906,45555,45556,46033,46457</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2010GC003066$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Georgiopoulou, Aggeliki</creatorcontrib><creatorcontrib>Masson, Douglas G.</creatorcontrib><creatorcontrib>Wynn, Russell B.</creatorcontrib><creatorcontrib>Krastel, Sebastian</creatorcontrib><title>Sahara Slide: Age, initiation, and processes of a giant submarine slide</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of ∼2000 m. High primary productivity in surface waters drives accumulation of thick fine‐grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large‐scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab‐type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of ∼900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50–60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming.</description><subject>Climate change</subject><subject>Construction</subject><subject>Continental margins</subject><subject>Continental slope</subject><subject>Cores</subject><subject>debris flow</subject><subject>Failure</subject><subject>Geophysics</subject><subject>Global warming</subject><subject>Landslides</subject><subject>Marine geology</subject><subject>northwest Africa</subject><subject>Pore pressure</subject><subject>Porosity</subject><subject>Sahara Slide</subject><subject>Sand</subject><subject>Sea level</subject><subject>Sea level rise</subject><subject>Sedimentation rates</subject><subject>Sediments</subject><subject>slope instability</subject><subject>Submarines</subject><subject>Surface water</subject><subject>tsunami</subject><subject>turbidite</subject><subject>Water depth</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0E1LxDAQBuAiCn7e_AHBk4etTpImab2tVau4KLjKegtjmmq0265Ni_rv7VIR8aCnyeF5w8wbBLsUDiiw5JABhSwF4CDlSrBBBRMhA6ZWf7zXg03vnwFoJES8EWRTfMIGybR0uT0i40c7Iq5yrcPW1dWIYJWTRVMb6731pC4IkkeHVUt89zDHxlWW-GV0O1grsPR252tuBXdnp7fpeTi5zi7S8STESAEPY8oNGMHZQ14gsxjbXJk4sYmSLBaFQIrcGAWKRomCnFmDqChHg1GvE-Rbwf7wb7_Ua2d9q-fOG1uWWNm685rKiLGYS8r_p4JFPEkkh57u_aLPdddU_SE6lpRyGoPs0WhApqm9b2yhF43rO_jQFPSyf_2z_56zgb-50n78aXWWZadURcudwyHkfGvfv0PYvGipuBJ6dpXp48nl_c2MpfqEfwLx8ZLJ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Georgiopoulou, Aggeliki</creator><creator>Masson, Douglas G.</creator><creator>Wynn, Russell B.</creator><creator>Krastel, Sebastian</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201007</creationdate><title>Sahara Slide: Age, initiation, and processes of a giant submarine slide</title><author>Georgiopoulou, Aggeliki ; Masson, Douglas G. ; Wynn, Russell B. ; Krastel, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4703-813c0c532bdfa2ea8ed7c89e976285f5a1a3cc70714970d2ecaa713aca42ea9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Climate change</topic><topic>Construction</topic><topic>Continental margins</topic><topic>Continental slope</topic><topic>Cores</topic><topic>debris flow</topic><topic>Failure</topic><topic>Geophysics</topic><topic>Global warming</topic><topic>Landslides</topic><topic>Marine geology</topic><topic>northwest Africa</topic><topic>Pore pressure</topic><topic>Porosity</topic><topic>Sahara Slide</topic><topic>Sand</topic><topic>Sea level</topic><topic>Sea level rise</topic><topic>Sedimentation rates</topic><topic>Sediments</topic><topic>slope instability</topic><topic>Submarines</topic><topic>Surface water</topic><topic>tsunami</topic><topic>turbidite</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiopoulou, Aggeliki</creatorcontrib><creatorcontrib>Masson, Douglas G.</creatorcontrib><creatorcontrib>Wynn, Russell B.</creatorcontrib><creatorcontrib>Krastel, Sebastian</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Georgiopoulou, Aggeliki</au><au>Masson, Douglas G.</au><au>Wynn, Russell B.</au><au>Krastel, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sahara Slide: Age, initiation, and processes of a giant submarine slide</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2010-07</date><risdate>2010</risdate><volume>11</volume><issue>7</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>The Sahara Slide is a giant submarine landslide on the northwest African continental margin. The landslide is located on the open continental slope offshore arid Western Sahara, with a headwall at a water depth of ∼2000 m. High primary productivity in surface waters drives accumulation of thick fine‐grained pelagic/hemipelagic sediment sequences in the slide source area. Rare but large‐scale slope failures, such as the Sahara Slide that remobilized approximately 600 km3 of sediment, are characteristic of this sedimentological setting. Seismic profiles collected from the slide scar reveal a stepped profile with two 100 m high headwalls, suggesting that the slide occurred retrogressively as a slab‐type failure. Sediment cores recovered from the slide deposit provide new insights into the process by which the slide eroded and entrained a volcaniclastic sand layer. When this layer was entrained at the base of the slide it became fluidized and resulted in low apparent friction, facilitating the exceptionally long runout of ∼900 km. The slide location appears to be controlled by the buried headwall of an older slope failure, and we suggest that the cause of the slide relates to differential sedimentation rates and compaction across these scarps, leading to local increases of pore pressure. Sediment cores yield a date of 50–60 ka for the main slide event, a period of global sea level rise which may have contributed to pore pressure buildup. The link with sea level rising is consistent with other submarine landslides on this margin, drawing attention to this potential hazard during global warming.</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2010GC003066</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1525-2027 |
ispartof | Geochemistry, geophysics, geosystems : G3, 2010-07, Vol.11 (7), p.np-n/a |
issn | 1525-2027 1525-2027 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642283613 |
source | Wiley-Blackwell Open Access Titles |
subjects | Climate change Construction Continental margins Continental slope Cores debris flow Failure Geophysics Global warming Landslides Marine geology northwest Africa Pore pressure Porosity Sahara Slide Sand Sea level Sea level rise Sedimentation rates Sediments slope instability Submarines Surface water tsunami turbidite Water depth |
title | Sahara Slide: Age, initiation, and processes of a giant submarine slide |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sahara%20Slide:%20Age,%20initiation,%20and%20processes%20of%20a%20giant%20submarine%20slide&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Georgiopoulou,%20Aggeliki&rft.date=2010-07&rft.volume=11&rft.issue=7&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2010GC003066&rft_dat=%3Cproquest_24P%3E2315586231%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=861131806&rft_id=info:pmid/&rfr_iscdi=true |