Thermal pulse energy harvesting
This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during eac...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2013-08, Vol.57, p.632-640 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 640 |
---|---|
container_issue | |
container_start_page | 632 |
container_title | Energy (Oxford) |
container_volume | 57 |
creator | McKay, Ian Salmon Wang, Evelyn N. |
description | This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during each thermal pulse, rather than divided between the heat engine and a heat sink. This effect allows the energy harvester to work at maximum power and efficiency despite an otherwise unfavorable heat engine–heat sink thermal resistance ratio. In this paper, the analysis of a generalized energy harvester model and experiments with a mechanical thermal switch demonstrate how the pulse mode can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80%, although at reduced total power. At a 1:2 engine–sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy promises to enhance the efficiency and power density of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.
•A thermal pulse operating mode can increase the maximum power of many thermal energy harvesting systems.•Two modes of pulsed heat transfer were modeled and compared to proof-of-concept experiments.•At a 1:2 heat engine–heat sink thermal resistance ratio, the enhancement exceeds 60% in power and 15% in efficiency. |
doi_str_mv | 10.1016/j.energy.2013.05.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642283424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544213004635</els_id><sourcerecordid>1642283424</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-b5d2a910153a81d2087f04484e408116dcae514fa3a07c5bc441142b4837530e3</originalsourceid><addsrcrecordid>eNqNkUtrwzAQhHVooenjHxSaS6EXuytpJcuXQgl9QaCX9CwUeZ04OE4qJYH8-yo49Nj0tIf9ZmbZYeyWQ86B68dFTh2F2T4XwGUOKgdUZ2wAUkOmEMUFu4xxAQDKlOWA3U3mFJauHa63baRhrx3OXdhR3DTd7Jqd1y5tbo7zin29vkxG79n48-1j9DzOvOK4yaaqEq5MByjpDK8EmKIGRIOEYDjXlXeUwNpJB4VXU4_IOYopGlkoCSSv2EPvuw6r723Ktssmempb19FqGy3XKISRKPB_qEyu_DSqQEmpjSxPo6hRaS65Tij2qA-rGAPVdh2apQt7y8EeSrAL2z_SHkqwoGwqIcnujwkuetfWwXW-ib9aUWgoDR7sn3qO0r93DQUbfUOdp6oJ5De2WjV_B_0AVyucrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464561316</pqid></control><display><type>article</type><title>Thermal pulse energy harvesting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>McKay, Ian Salmon ; Wang, Evelyn N.</creator><creatorcontrib>McKay, Ian Salmon ; Wang, Evelyn N.</creatorcontrib><description>This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during each thermal pulse, rather than divided between the heat engine and a heat sink. This effect allows the energy harvester to work at maximum power and efficiency despite an otherwise unfavorable heat engine–heat sink thermal resistance ratio. In this paper, the analysis of a generalized energy harvester model and experiments with a mechanical thermal switch demonstrate how the pulse mode can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80%, although at reduced total power. At a 1:2 engine–sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy promises to enhance the efficiency and power density of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.
•A thermal pulse operating mode can increase the maximum power of many thermal energy harvesting systems.•Two modes of pulsed heat transfer were modeled and compared to proof-of-concept experiments.•At a 1:2 heat engine–heat sink thermal resistance ratio, the enhancement exceeds 60% in power and 15% in efficiency.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2013.05.045</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Density ; Energy ; Energy harvesting ; Energy management ; Exact sciences and technology ; Harvesters ; Heat engines ; Heat sinks ; Heat transfer ; Radioisotope power system ; Thermal energy ; Thermal energy conversion ; Thermal pulse</subject><ispartof>Energy (Oxford), 2013-08, Vol.57, p.632-640</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-b5d2a910153a81d2087f04484e408116dcae514fa3a07c5bc441142b4837530e3</citedby><cites>FETCH-LOGICAL-c514t-b5d2a910153a81d2087f04484e408116dcae514fa3a07c5bc441142b4837530e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360544213004635$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27609846$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>McKay, Ian Salmon</creatorcontrib><creatorcontrib>Wang, Evelyn N.</creatorcontrib><title>Thermal pulse energy harvesting</title><title>Energy (Oxford)</title><description>This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during each thermal pulse, rather than divided between the heat engine and a heat sink. This effect allows the energy harvester to work at maximum power and efficiency despite an otherwise unfavorable heat engine–heat sink thermal resistance ratio. In this paper, the analysis of a generalized energy harvester model and experiments with a mechanical thermal switch demonstrate how the pulse mode can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80%, although at reduced total power. At a 1:2 engine–sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy promises to enhance the efficiency and power density of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.
•A thermal pulse operating mode can increase the maximum power of many thermal energy harvesting systems.•Two modes of pulsed heat transfer were modeled and compared to proof-of-concept experiments.•At a 1:2 heat engine–heat sink thermal resistance ratio, the enhancement exceeds 60% in power and 15% in efficiency.</description><subject>Applied sciences</subject><subject>Density</subject><subject>Energy</subject><subject>Energy harvesting</subject><subject>Energy management</subject><subject>Exact sciences and technology</subject><subject>Harvesters</subject><subject>Heat engines</subject><subject>Heat sinks</subject><subject>Heat transfer</subject><subject>Radioisotope power system</subject><subject>Thermal energy</subject><subject>Thermal energy conversion</subject><subject>Thermal pulse</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkUtrwzAQhHVooenjHxSaS6EXuytpJcuXQgl9QaCX9CwUeZ04OE4qJYH8-yo49Nj0tIf9ZmbZYeyWQ86B68dFTh2F2T4XwGUOKgdUZ2wAUkOmEMUFu4xxAQDKlOWA3U3mFJauHa63baRhrx3OXdhR3DTd7Jqd1y5tbo7zin29vkxG79n48-1j9DzOvOK4yaaqEq5MByjpDK8EmKIGRIOEYDjXlXeUwNpJB4VXU4_IOYopGlkoCSSv2EPvuw6r723Ktssmempb19FqGy3XKISRKPB_qEyu_DSqQEmpjSxPo6hRaS65Tij2qA-rGAPVdh2apQt7y8EeSrAL2z_SHkqwoGwqIcnujwkuetfWwXW-ib9aUWgoDR7sn3qO0r93DQUbfUOdp6oJ5De2WjV_B_0AVyucrw</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>McKay, Ian Salmon</creator><creator>Wang, Evelyn N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130801</creationdate><title>Thermal pulse energy harvesting</title><author>McKay, Ian Salmon ; Wang, Evelyn N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-b5d2a910153a81d2087f04484e408116dcae514fa3a07c5bc441142b4837530e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Density</topic><topic>Energy</topic><topic>Energy harvesting</topic><topic>Energy management</topic><topic>Exact sciences and technology</topic><topic>Harvesters</topic><topic>Heat engines</topic><topic>Heat sinks</topic><topic>Heat transfer</topic><topic>Radioisotope power system</topic><topic>Thermal energy</topic><topic>Thermal energy conversion</topic><topic>Thermal pulse</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKay, Ian Salmon</creatorcontrib><creatorcontrib>Wang, Evelyn N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKay, Ian Salmon</au><au>Wang, Evelyn N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal pulse energy harvesting</atitle><jtitle>Energy (Oxford)</jtitle><date>2013-08-01</date><risdate>2013</risdate><volume>57</volume><spage>632</spage><epage>640</epage><pages>632-640</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>This paper presents a new method to enhance thermal energy harvesting with pulsed heat transfer. By creating a phase shift between the hot and cold sides of an energy harvester, periodically pulsed heat flow can allow an available temperature gradient to be concentrated over a heat engine during each thermal pulse, rather than divided between the heat engine and a heat sink. This effect allows the energy harvester to work at maximum power and efficiency despite an otherwise unfavorable heat engine–heat sink thermal resistance ratio. In this paper, the analysis of a generalized energy harvester model and experiments with a mechanical thermal switch demonstrate how the pulse mode can improve the efficiency of a system with equal engine and heat sink thermal resistances by over 80%, although at reduced total power. At a 1:2 engine–sink resistance ratio, the improvement can simultaneously exceed 60% in power and 15% in efficiency. The thermal pulse strategy promises to enhance the efficiency and power density of a variety of systems that convert thermal energy, from waste heat harvesters to the radioisotope power systems on many spacecraft.
•A thermal pulse operating mode can increase the maximum power of many thermal energy harvesting systems.•Two modes of pulsed heat transfer were modeled and compared to proof-of-concept experiments.•At a 1:2 heat engine–heat sink thermal resistance ratio, the enhancement exceeds 60% in power and 15% in efficiency.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2013.05.045</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2013-08, Vol.57, p.632-640 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642283424 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Applied sciences Density Energy Energy harvesting Energy management Exact sciences and technology Harvesters Heat engines Heat sinks Heat transfer Radioisotope power system Thermal energy Thermal energy conversion Thermal pulse |
title | Thermal pulse energy harvesting |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T19%3A19%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20pulse%20energy%20harvesting&rft.jtitle=Energy%20(Oxford)&rft.au=McKay,%20Ian%20Salmon&rft.date=2013-08-01&rft.volume=57&rft.spage=632&rft.epage=640&rft.pages=632-640&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2013.05.045&rft_dat=%3Cproquest_cross%3E1642283424%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464561316&rft_id=info:pmid/&rft_els_id=S0360544213004635&rfr_iscdi=true |