Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction

Numerical experiments are performed using the MITgcm to investigate the interaction of a mode‐one internal tide with barotropic and baroclinic mode‐one mesoscale eddies. Results show that after a mode‐one internal tide passes through a barotropic eddy, spatial hot and cold spots of energy flux are p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Oceans 2014-01, Vol.119 (1), p.523-536
Hauptverfasser: Dunphy, Michael, Lamb, Kevin G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 1
container_start_page 523
container_title Journal of geophysical research. Oceans
container_volume 119
creator Dunphy, Michael
Lamb, Kevin G.
description Numerical experiments are performed using the MITgcm to investigate the interaction of a mode‐one internal tide with barotropic and baroclinic mode‐one mesoscale eddies. Results show that after a mode‐one internal tide passes through a barotropic eddy, spatial hot and cold spots of energy flux are produced in beam‐like patterns. The magnitude of the energy flux in the hot spots can exceed twice the incident flux while in the cold spots can reach nearly zero. Passing a mode‐one internal tide through a mode‐one baroclinic eddy results in the scattering of energy from the incident mode‐one to modes two and higher. The higher mode waves are produced in beam‐like patterns. For the parameter regime explored here, we find conversion efficiencies that reach 13% for eddies of diameter 120 km. The Rossby numbers for our experiments are order one, corresponding to energetic mesoscale eddies that are typically found in western boundary current extensions and in the southern ocean. These eddies have length scales comparable to those of low‐mode internal tides, and we expect that interaction between the two will be easily formed in locations where these phenomena coexist. Key Points Barotropic eddies induce focus/shadow regions in a mode‐one internal tide field Mode‐one eddies move energy from mode‐one internal tide to modes two and higher The implication of these effects is localized enhancement of the energy cascade
doi_str_mv 10.1002/2013JC009293
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642282048</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1559669238</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5389-ba741bb9ee242b5757e7f3b1fa9e05598645036f60a8b51f5c27232d9d82fc433</originalsourceid><addsrcrecordid>eNqFkU1rFTEUhoNYsFy78wcMuHHhaL4_lvZib1uKBVFchkzmRFPnTmqSq95_b4aRIi70bM4b3uc9h3AQekbwK4IxfU0xYddbjA017BE6pUSavmny-EEr8QSdlXKHW2miOTenyF8kfyhx_ty5eey-Q67Ru6nbpxG64l2tkBczha5-gS7EXOpqxrlZc0NrbK_h2O2hpJaYoINxPK6-8zWm-Sk6CW4qcPa7b9DHi7cftpf9ze3uavvmpneCadMPTnEyDAaAcjoIJRSowAYSnAEshNGSC8xkkNjpQZAgPFWU0dGMmgbPGdugF-vc-5y-HaBUu4_FwzS5GdKhWCI5pZpirv-Ptn1SGsoW9Plf6F06LD9fBjafSsZFo16ulM-plAzB3ue4d_loCbbLfeyf92k4W_EfcYLjP1l7vXu_pVg0uUH9moqlws-HlMtfrVRMCfvp3c6yc42x2p1bw34BxeSeUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638326345</pqid></control><display><type>article</type><title>Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction</title><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Dunphy, Michael ; Lamb, Kevin G.</creator><creatorcontrib>Dunphy, Michael ; Lamb, Kevin G.</creatorcontrib><description>Numerical experiments are performed using the MITgcm to investigate the interaction of a mode‐one internal tide with barotropic and baroclinic mode‐one mesoscale eddies. Results show that after a mode‐one internal tide passes through a barotropic eddy, spatial hot and cold spots of energy flux are produced in beam‐like patterns. The magnitude of the energy flux in the hot spots can exceed twice the incident flux while in the cold spots can reach nearly zero. Passing a mode‐one internal tide through a mode‐one baroclinic eddy results in the scattering of energy from the incident mode‐one to modes two and higher. The higher mode waves are produced in beam‐like patterns. For the parameter regime explored here, we find conversion efficiencies that reach 13% for eddies of diameter 120 km. The Rossby numbers for our experiments are order one, corresponding to energetic mesoscale eddies that are typically found in western boundary current extensions and in the southern ocean. These eddies have length scales comparable to those of low‐mode internal tides, and we expect that interaction between the two will be easily formed in locations where these phenomena coexist. Key Points Barotropic eddies induce focus/shadow regions in a mode‐one internal tide field Mode‐one eddies move energy from mode‐one internal tide to modes two and higher The implication of these effects is localized enhancement of the energy cascade</description><identifier>ISSN: 2169-9275</identifier><identifier>EISSN: 2169-9291</identifier><identifier>DOI: 10.1002/2013JC009293</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Boundaries ; Eddies ; Energy ; energy budget ; Fluctuations ; Flux ; Geophysics ; interaction ; internal tide ; Marine ; Mathematical models ; mesoscale eddy ; nonlinear ; Ocean circulation ; resonance ; Scattering ; Spots ; Tidal energy ; Tides</subject><ispartof>Journal of geophysical research. Oceans, 2014-01, Vol.119 (1), p.523-536</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5389-ba741bb9ee242b5757e7f3b1fa9e05598645036f60a8b51f5c27232d9d82fc433</citedby><cites>FETCH-LOGICAL-a5389-ba741bb9ee242b5757e7f3b1fa9e05598645036f60a8b51f5c27232d9d82fc433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2013JC009293$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2013JC009293$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Dunphy, Michael</creatorcontrib><creatorcontrib>Lamb, Kevin G.</creatorcontrib><title>Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction</title><title>Journal of geophysical research. Oceans</title><addtitle>J. Geophys. Res. Oceans</addtitle><description>Numerical experiments are performed using the MITgcm to investigate the interaction of a mode‐one internal tide with barotropic and baroclinic mode‐one mesoscale eddies. Results show that after a mode‐one internal tide passes through a barotropic eddy, spatial hot and cold spots of energy flux are produced in beam‐like patterns. The magnitude of the energy flux in the hot spots can exceed twice the incident flux while in the cold spots can reach nearly zero. Passing a mode‐one internal tide through a mode‐one baroclinic eddy results in the scattering of energy from the incident mode‐one to modes two and higher. The higher mode waves are produced in beam‐like patterns. For the parameter regime explored here, we find conversion efficiencies that reach 13% for eddies of diameter 120 km. The Rossby numbers for our experiments are order one, corresponding to energetic mesoscale eddies that are typically found in western boundary current extensions and in the southern ocean. These eddies have length scales comparable to those of low‐mode internal tides, and we expect that interaction between the two will be easily formed in locations where these phenomena coexist. Key Points Barotropic eddies induce focus/shadow regions in a mode‐one internal tide field Mode‐one eddies move energy from mode‐one internal tide to modes two and higher The implication of these effects is localized enhancement of the energy cascade</description><subject>Boundaries</subject><subject>Eddies</subject><subject>Energy</subject><subject>energy budget</subject><subject>Fluctuations</subject><subject>Flux</subject><subject>Geophysics</subject><subject>interaction</subject><subject>internal tide</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>mesoscale eddy</subject><subject>nonlinear</subject><subject>Ocean circulation</subject><subject>resonance</subject><subject>Scattering</subject><subject>Spots</subject><subject>Tidal energy</subject><subject>Tides</subject><issn>2169-9275</issn><issn>2169-9291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkU1rFTEUhoNYsFy78wcMuHHhaL4_lvZib1uKBVFchkzmRFPnTmqSq95_b4aRIi70bM4b3uc9h3AQekbwK4IxfU0xYddbjA017BE6pUSavmny-EEr8QSdlXKHW2miOTenyF8kfyhx_ty5eey-Q67Ru6nbpxG64l2tkBczha5-gS7EXOpqxrlZc0NrbK_h2O2hpJaYoINxPK6-8zWm-Sk6CW4qcPa7b9DHi7cftpf9ze3uavvmpneCadMPTnEyDAaAcjoIJRSowAYSnAEshNGSC8xkkNjpQZAgPFWU0dGMmgbPGdugF-vc-5y-HaBUu4_FwzS5GdKhWCI5pZpirv-Ptn1SGsoW9Plf6F06LD9fBjafSsZFo16ulM-plAzB3ue4d_loCbbLfeyf92k4W_EfcYLjP1l7vXu_pVg0uUH9moqlws-HlMtfrVRMCfvp3c6yc42x2p1bw34BxeSeUQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Dunphy, Michael</creator><creator>Lamb, Kevin G.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction</title><author>Dunphy, Michael ; Lamb, Kevin G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5389-ba741bb9ee242b5757e7f3b1fa9e05598645036f60a8b51f5c27232d9d82fc433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boundaries</topic><topic>Eddies</topic><topic>Energy</topic><topic>energy budget</topic><topic>Fluctuations</topic><topic>Flux</topic><topic>Geophysics</topic><topic>interaction</topic><topic>internal tide</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>mesoscale eddy</topic><topic>nonlinear</topic><topic>Ocean circulation</topic><topic>resonance</topic><topic>Scattering</topic><topic>Spots</topic><topic>Tidal energy</topic><topic>Tides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dunphy, Michael</creatorcontrib><creatorcontrib>Lamb, Kevin G.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Oceans</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dunphy, Michael</au><au>Lamb, Kevin G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction</atitle><jtitle>Journal of geophysical research. Oceans</jtitle><addtitle>J. Geophys. Res. Oceans</addtitle><date>2014-01</date><risdate>2014</risdate><volume>119</volume><issue>1</issue><spage>523</spage><epage>536</epage><pages>523-536</pages><issn>2169-9275</issn><eissn>2169-9291</eissn><abstract>Numerical experiments are performed using the MITgcm to investigate the interaction of a mode‐one internal tide with barotropic and baroclinic mode‐one mesoscale eddies. Results show that after a mode‐one internal tide passes through a barotropic eddy, spatial hot and cold spots of energy flux are produced in beam‐like patterns. The magnitude of the energy flux in the hot spots can exceed twice the incident flux while in the cold spots can reach nearly zero. Passing a mode‐one internal tide through a mode‐one baroclinic eddy results in the scattering of energy from the incident mode‐one to modes two and higher. The higher mode waves are produced in beam‐like patterns. For the parameter regime explored here, we find conversion efficiencies that reach 13% for eddies of diameter 120 km. The Rossby numbers for our experiments are order one, corresponding to energetic mesoscale eddies that are typically found in western boundary current extensions and in the southern ocean. These eddies have length scales comparable to those of low‐mode internal tides, and we expect that interaction between the two will be easily formed in locations where these phenomena coexist. Key Points Barotropic eddies induce focus/shadow regions in a mode‐one internal tide field Mode‐one eddies move energy from mode‐one internal tide to modes two and higher The implication of these effects is localized enhancement of the energy cascade</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2013JC009293</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9275
ispartof Journal of geophysical research. Oceans, 2014-01, Vol.119 (1), p.523-536
issn 2169-9275
2169-9291
language eng
recordid cdi_proquest_miscellaneous_1642282048
source Access via Wiley Online Library; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Boundaries
Eddies
Energy
energy budget
Fluctuations
Flux
Geophysics
interaction
internal tide
Marine
Mathematical models
mesoscale eddy
nonlinear
Ocean circulation
resonance
Scattering
Spots
Tidal energy
Tides
title Focusing and vertical mode scattering of the first mode internal tide by mesoscale eddy interaction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A04%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Focusing%20and%20vertical%20mode%20scattering%20of%20the%20first%20mode%20internal%20tide%20by%20mesoscale%20eddy%20interaction&rft.jtitle=Journal%20of%20geophysical%20research.%20Oceans&rft.au=Dunphy,%20Michael&rft.date=2014-01&rft.volume=119&rft.issue=1&rft.spage=523&rft.epage=536&rft.pages=523-536&rft.issn=2169-9275&rft.eissn=2169-9291&rft_id=info:doi/10.1002/2013JC009293&rft_dat=%3Cproquest_cross%3E1559669238%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638326345&rft_id=info:pmid/&rfr_iscdi=true