A 1-D model of physical chemistry in Saturn's inner magnetosphere

Water vapor spewed out of Enceladus' geysers spreads across the Saturn system through dissociation, charge exchange, and neutral‐neutral collisions. The combined effects of impact ionization by suprathermal electrons, charge‐exchange between ions and neutrals, and radial transport of the plasma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Planets 2013-08, Vol.118 (8), p.1567-1581
Hauptverfasser: Fleshman, B. L., Delamere, P. A., Bagenal, F., Cassidy, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1581
container_issue 8
container_start_page 1567
container_title Journal of geophysical research. Planets
container_volume 118
creator Fleshman, B. L.
Delamere, P. A.
Bagenal, F.
Cassidy, T.
description Water vapor spewed out of Enceladus' geysers spreads across the Saturn system through dissociation, charge exchange, and neutral‐neutral collisions. The combined effects of impact ionization by suprathermal electrons, charge‐exchange between ions and neutrals, and radial transport of the plasma produce the observed distribution of ions and their temperature in the magnetosphere of Saturn. In this paper we combine our physical chemistry model with the neutral cloud model of Cassidy and Johnson (2010) to explore how the spatial distributions of hot electrons and of neutrals, as well as radial transport rates, produce the observed ion properties between 4 and 10 RS (where RS is the radius of Saturn). We investigate the sensitivity of the model output to radial transport rates and the radial profile of hot electron density. Selected results are as follows: (1) Hot electrons (e.g., tens to hundreds eV) at 4 RS (Enceladus' orbit) make up between ≈0.25% and 0.5% of the total electron density, consistent with our previous findings, increasing to ∼10% at 10 RS. (2) The region over which chemistry plays a dominant role extends to 7 RS. Beyond 7 RS radial transport takes over, establishing the rate of plasma outflow from Saturn's plasma torus. (3) The plasma radial transport rate at 10 RS is found to be between 20 and 80 kg/s for reasonable choices of hot electron density, radial transport rate, and neutral hydrogen and H2O densities. Key Points Model the plasma sheet properties of Saturn's inner magnetosphere Investigate sensitivity to hot electrons, neutral density, and radial transport Determine the radial plasma mass outflow rate
doi_str_mv 10.1002/jgre.20106
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642279521</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1622601274</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4056-a90b0097d291bdec516404258efb3c7c8fe3ff745f97df1eb01976d39505f98e3</originalsourceid><addsrcrecordid>eNqNkE9Lw0AQxYMoWGovfoIFD4qQurv5s9ljqbVVSi1WEbwsyWa2TU2TuJui-fZujfXgQZzLDI_fG2ae45wS3CcY06v1UkOfYoLDA6dDSchdbvXD_Yw5O3Z6xqyxrchKxOs4gwEi7jXalCnkqFSoWjUmk3GO5Ao2mal1g7ICLeJ6q4tzY-cCNNrEywLq0lQr0HDiHKk4N9D77l3n6Wb0OJy40_vx7XAwdaWPg9CNOU6wPSGlnCQpyICEPvZpEIFKPMlkpMBTivmBsowikGDCWZh6PMBWisDrOhft3kqXb1swtbD3ScjzuIBya4TdRynjASX_QCkNMaHMt-jZL3Rd2lftI5byIp9gTiNLXbaU1KUxGpSodLaJdSMIFrvsxS578ZW9hUkLv2c5NH-Q4m78MNp73NZjI4ePH0-sX0XIPBaI59lYTOazl_liSsTC-wTsepK7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1638410928</pqid></control><display><type>article</type><title>A 1-D model of physical chemistry in Saturn's inner magnetosphere</title><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Fleshman, B. L. ; Delamere, P. A. ; Bagenal, F. ; Cassidy, T.</creator><creatorcontrib>Fleshman, B. L. ; Delamere, P. A. ; Bagenal, F. ; Cassidy, T.</creatorcontrib><description>Water vapor spewed out of Enceladus' geysers spreads across the Saturn system through dissociation, charge exchange, and neutral‐neutral collisions. The combined effects of impact ionization by suprathermal electrons, charge‐exchange between ions and neutrals, and radial transport of the plasma produce the observed distribution of ions and their temperature in the magnetosphere of Saturn. In this paper we combine our physical chemistry model with the neutral cloud model of Cassidy and Johnson (2010) to explore how the spatial distributions of hot electrons and of neutrals, as well as radial transport rates, produce the observed ion properties between 4 and 10 RS (where RS is the radius of Saturn). We investigate the sensitivity of the model output to radial transport rates and the radial profile of hot electron density. Selected results are as follows: (1) Hot electrons (e.g., tens to hundreds eV) at 4 RS (Enceladus' orbit) make up between ≈0.25% and 0.5% of the total electron density, consistent with our previous findings, increasing to ∼10% at 10 RS. (2) The region over which chemistry plays a dominant role extends to 7 RS. Beyond 7 RS radial transport takes over, establishing the rate of plasma outflow from Saturn's plasma torus. (3) The plasma radial transport rate at 10 RS is found to be between 20 and 80 kg/s for reasonable choices of hot electron density, radial transport rate, and neutral hydrogen and H2O densities. Key Points Model the plasma sheet properties of Saturn's inner magnetosphere Investigate sensitivity to hot electrons, neutral density, and radial transport Determine the radial plasma mass outflow rate</description><identifier>ISSN: 2169-9097</identifier><identifier>EISSN: 2169-9100</identifier><identifier>DOI: 10.1002/jgre.20106</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Chemistry ; Clouds ; Density ; Enceladus ; Enceladus torus ; Geysers ; Hot electrons ; Ionization ; Ions ; Magnetospheres ; neutral clouds ; Outflow ; Physical chemistry ; Plasma ; radial transport ; Saturn's magnetosphere ; Spatial distribution ; Transport ; Water vapor</subject><ispartof>Journal of geophysical research. Planets, 2013-08, Vol.118 (8), p.1567-1581</ispartof><rights>2013. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4056-a90b0097d291bdec516404258efb3c7c8fe3ff745f97df1eb01976d39505f98e3</citedby><cites>FETCH-LOGICAL-c4056-a90b0097d291bdec516404258efb3c7c8fe3ff745f97df1eb01976d39505f98e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgre.20106$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgre.20106$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids></links><search><creatorcontrib>Fleshman, B. L.</creatorcontrib><creatorcontrib>Delamere, P. A.</creatorcontrib><creatorcontrib>Bagenal, F.</creatorcontrib><creatorcontrib>Cassidy, T.</creatorcontrib><title>A 1-D model of physical chemistry in Saturn's inner magnetosphere</title><title>Journal of geophysical research. Planets</title><addtitle>J. Geophys. Res. Planets</addtitle><description>Water vapor spewed out of Enceladus' geysers spreads across the Saturn system through dissociation, charge exchange, and neutral‐neutral collisions. The combined effects of impact ionization by suprathermal electrons, charge‐exchange between ions and neutrals, and radial transport of the plasma produce the observed distribution of ions and their temperature in the magnetosphere of Saturn. In this paper we combine our physical chemistry model with the neutral cloud model of Cassidy and Johnson (2010) to explore how the spatial distributions of hot electrons and of neutrals, as well as radial transport rates, produce the observed ion properties between 4 and 10 RS (where RS is the radius of Saturn). We investigate the sensitivity of the model output to radial transport rates and the radial profile of hot electron density. Selected results are as follows: (1) Hot electrons (e.g., tens to hundreds eV) at 4 RS (Enceladus' orbit) make up between ≈0.25% and 0.5% of the total electron density, consistent with our previous findings, increasing to ∼10% at 10 RS. (2) The region over which chemistry plays a dominant role extends to 7 RS. Beyond 7 RS radial transport takes over, establishing the rate of plasma outflow from Saturn's plasma torus. (3) The plasma radial transport rate at 10 RS is found to be between 20 and 80 kg/s for reasonable choices of hot electron density, radial transport rate, and neutral hydrogen and H2O densities. Key Points Model the plasma sheet properties of Saturn's inner magnetosphere Investigate sensitivity to hot electrons, neutral density, and radial transport Determine the radial plasma mass outflow rate</description><subject>Chemistry</subject><subject>Clouds</subject><subject>Density</subject><subject>Enceladus</subject><subject>Enceladus torus</subject><subject>Geysers</subject><subject>Hot electrons</subject><subject>Ionization</subject><subject>Ions</subject><subject>Magnetospheres</subject><subject>neutral clouds</subject><subject>Outflow</subject><subject>Physical chemistry</subject><subject>Plasma</subject><subject>radial transport</subject><subject>Saturn's magnetosphere</subject><subject>Spatial distribution</subject><subject>Transport</subject><subject>Water vapor</subject><issn>2169-9097</issn><issn>2169-9100</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkE9Lw0AQxYMoWGovfoIFD4qQurv5s9ljqbVVSi1WEbwsyWa2TU2TuJui-fZujfXgQZzLDI_fG2ae45wS3CcY06v1UkOfYoLDA6dDSchdbvXD_Yw5O3Z6xqyxrchKxOs4gwEi7jXalCnkqFSoWjUmk3GO5Ao2mal1g7ICLeJ6q4tzY-cCNNrEywLq0lQr0HDiHKk4N9D77l3n6Wb0OJy40_vx7XAwdaWPg9CNOU6wPSGlnCQpyICEPvZpEIFKPMlkpMBTivmBsowikGDCWZh6PMBWisDrOhft3kqXb1swtbD3ScjzuIBya4TdRynjASX_QCkNMaHMt-jZL3Rd2lftI5byIp9gTiNLXbaU1KUxGpSodLaJdSMIFrvsxS578ZW9hUkLv2c5NH-Q4m78MNp73NZjI4ePH0-sX0XIPBaI59lYTOazl_liSsTC-wTsepK7</recordid><startdate>201308</startdate><enddate>201308</enddate><creator>Fleshman, B. L.</creator><creator>Delamere, P. A.</creator><creator>Bagenal, F.</creator><creator>Cassidy, T.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope></search><sort><creationdate>201308</creationdate><title>A 1-D model of physical chemistry in Saturn's inner magnetosphere</title><author>Fleshman, B. L. ; Delamere, P. A. ; Bagenal, F. ; Cassidy, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4056-a90b0097d291bdec516404258efb3c7c8fe3ff745f97df1eb01976d39505f98e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Chemistry</topic><topic>Clouds</topic><topic>Density</topic><topic>Enceladus</topic><topic>Enceladus torus</topic><topic>Geysers</topic><topic>Hot electrons</topic><topic>Ionization</topic><topic>Ions</topic><topic>Magnetospheres</topic><topic>neutral clouds</topic><topic>Outflow</topic><topic>Physical chemistry</topic><topic>Plasma</topic><topic>radial transport</topic><topic>Saturn's magnetosphere</topic><topic>Spatial distribution</topic><topic>Transport</topic><topic>Water vapor</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fleshman, B. L.</creatorcontrib><creatorcontrib>Delamere, P. A.</creatorcontrib><creatorcontrib>Bagenal, F.</creatorcontrib><creatorcontrib>Cassidy, T.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Planets</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fleshman, B. L.</au><au>Delamere, P. A.</au><au>Bagenal, F.</au><au>Cassidy, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 1-D model of physical chemistry in Saturn's inner magnetosphere</atitle><jtitle>Journal of geophysical research. Planets</jtitle><addtitle>J. Geophys. Res. Planets</addtitle><date>2013-08</date><risdate>2013</risdate><volume>118</volume><issue>8</issue><spage>1567</spage><epage>1581</epage><pages>1567-1581</pages><issn>2169-9097</issn><eissn>2169-9100</eissn><abstract>Water vapor spewed out of Enceladus' geysers spreads across the Saturn system through dissociation, charge exchange, and neutral‐neutral collisions. The combined effects of impact ionization by suprathermal electrons, charge‐exchange between ions and neutrals, and radial transport of the plasma produce the observed distribution of ions and their temperature in the magnetosphere of Saturn. In this paper we combine our physical chemistry model with the neutral cloud model of Cassidy and Johnson (2010) to explore how the spatial distributions of hot electrons and of neutrals, as well as radial transport rates, produce the observed ion properties between 4 and 10 RS (where RS is the radius of Saturn). We investigate the sensitivity of the model output to radial transport rates and the radial profile of hot electron density. Selected results are as follows: (1) Hot electrons (e.g., tens to hundreds eV) at 4 RS (Enceladus' orbit) make up between ≈0.25% and 0.5% of the total electron density, consistent with our previous findings, increasing to ∼10% at 10 RS. (2) The region over which chemistry plays a dominant role extends to 7 RS. Beyond 7 RS radial transport takes over, establishing the rate of plasma outflow from Saturn's plasma torus. (3) The plasma radial transport rate at 10 RS is found to be between 20 and 80 kg/s for reasonable choices of hot electron density, radial transport rate, and neutral hydrogen and H2O densities. Key Points Model the plasma sheet properties of Saturn's inner magnetosphere Investigate sensitivity to hot electrons, neutral density, and radial transport Determine the radial plasma mass outflow rate</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/jgre.20106</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2169-9097
ispartof Journal of geophysical research. Planets, 2013-08, Vol.118 (8), p.1567-1581
issn 2169-9097
2169-9100
language eng
recordid cdi_proquest_miscellaneous_1642279521
source Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Chemistry
Clouds
Density
Enceladus
Enceladus torus
Geysers
Hot electrons
Ionization
Ions
Magnetospheres
neutral clouds
Outflow
Physical chemistry
Plasma
radial transport
Saturn's magnetosphere
Spatial distribution
Transport
Water vapor
title A 1-D model of physical chemistry in Saturn's inner magnetosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%201-D%20model%20of%20physical%20chemistry%20in%20Saturn's%20inner%20magnetosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Planets&rft.au=Fleshman,%20B.%20L.&rft.date=2013-08&rft.volume=118&rft.issue=8&rft.spage=1567&rft.epage=1581&rft.pages=1567-1581&rft.issn=2169-9097&rft.eissn=2169-9100&rft_id=info:doi/10.1002/jgre.20106&rft_dat=%3Cproquest_cross%3E1622601274%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1638410928&rft_id=info:pmid/&rfr_iscdi=true