Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface

In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-01, Vol.738, p.492-521
Hauptverfasser: Kuznetsov, A. V., Blinov, D. G., Avramenko, A. A., Shevchuk, I. V., Tyrinov, A. I., Kuznetsov, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 521
container_issue
container_start_page 492
container_title Journal of fluid mechanics
container_volume 738
creator Kuznetsov, A. V.
Blinov, D. G.
Avramenko, A. A.
Shevchuk, I. V.
Tyrinov, A. I.
Kuznetsov, I. A.
description In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also developed an approximate solution for morphogen transport in the nodal pit. The solutions were obtained utilizing the proper generalized decomposition (PGD) method. We compared our approximate solutions with the results of numerical simulation of flow caused by the rotation of 81 cilia, and obtained reasonable agreement in most of the flow domain. We discuss locations where agreement is less accurate. The obtained semi-analytical solutions simplify the analysis of flow and morphogen distribution in a nodal pit.
doi_str_mv 10.1017/jfm.2013.588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642275410</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2013_588</cupid><sourcerecordid>3155475901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-96b1a1b5d02a3067563ddb0d30e432af977e251380c05fda25c40cb5f97864083</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBuAIgcTQsuMBLCEkFmR6fE-WVdUCUiU2sI4cX6YeJXGwM7R5Ax6bM-0IIYTEygt__o-O_6p6Q2FLgeqLfRi3DCjfyqZ5Vm2oUG2tlZDPqw0AYzWlDF5Wr0rZAypo9ab6eTnPOT3E0SyejMn5YYjTjqRAljtPBh-We5MdCUO6J2ZySPJ8l3Z-Iks2U5lTXkicHrEf-7ymKVoyYQ7pV1Jmb2NYj4E_EEYbl5WY5VHbOESc6Ug55GCsP69eBDMU__p0nlXfbq6_Xn2qb798_Hx1eVtb3jZL3aqeGtpLB8xwUFoq7lwPjoMXnJnQau2ZpLwBCzI4w6QVYHuJF40S0PCz6v1TLq79_eDL0o2xWFzbTD4dSkeVYExLQeH_VLSC46z2SN_-RffpkCdcBJXSWoKiFNWHJ2VzKiX70M0Zfz6vHYXu2GCHDXbHBjtsEPm7U6gp1gwBP9zG8vsNayjnimp021OswQqi2_k_pv8r-Bfd_quG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467750611</pqid></control><display><type>article</type><title>Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface</title><source>Cambridge Journals Online</source><creator>Kuznetsov, A. V. ; Blinov, D. G. ; Avramenko, A. A. ; Shevchuk, I. V. ; Tyrinov, A. I. ; Kuznetsov, I. A.</creator><creatorcontrib>Kuznetsov, A. V. ; Blinov, D. G. ; Avramenko, A. A. ; Shevchuk, I. V. ; Tyrinov, A. I. ; Kuznetsov, I. A.</creatorcontrib><description>In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also developed an approximate solution for morphogen transport in the nodal pit. The solutions were obtained utilizing the proper generalized decomposition (PGD) method. We compared our approximate solutions with the results of numerical simulation of flow caused by the rotation of 81 cilia, and obtained reasonable agreement in most of the flow domain. We discuss locations where agreement is less accurate. The obtained semi-analytical solutions simplify the analysis of flow and morphogen distribution in a nodal pit.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2013.588</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Biological and medical sciences ; Cellular biology ; Complex syndromes ; Computational fluid dynamics ; Embryology ; Flow ; Fluid flow ; Fluid mechanics ; Mathematical models ; Medical genetics ; Medical sciences ; Modelling ; Transport ; Vortices ; Vorticity</subject><ispartof>Journal of fluid mechanics, 2014-01, Vol.738, p.492-521</ispartof><rights>2013 Cambridge University Press</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-96b1a1b5d02a3067563ddb0d30e432af977e251380c05fda25c40cb5f97864083</citedby><cites>FETCH-LOGICAL-c398t-96b1a1b5d02a3067563ddb0d30e432af977e251380c05fda25c40cb5f97864083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112013005880/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28133617$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kuznetsov, A. V.</creatorcontrib><creatorcontrib>Blinov, D. G.</creatorcontrib><creatorcontrib>Avramenko, A. A.</creatorcontrib><creatorcontrib>Shevchuk, I. V.</creatorcontrib><creatorcontrib>Tyrinov, A. I.</creatorcontrib><creatorcontrib>Kuznetsov, I. A.</creatorcontrib><title>Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also developed an approximate solution for morphogen transport in the nodal pit. The solutions were obtained utilizing the proper generalized decomposition (PGD) method. We compared our approximate solutions with the results of numerical simulation of flow caused by the rotation of 81 cilia, and obtained reasonable agreement in most of the flow domain. We discuss locations where agreement is less accurate. The obtained semi-analytical solutions simplify the analysis of flow and morphogen distribution in a nodal pit.</description><subject>Approximation</subject><subject>Biological and medical sciences</subject><subject>Cellular biology</subject><subject>Complex syndromes</subject><subject>Computational fluid dynamics</subject><subject>Embryology</subject><subject>Flow</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Modelling</subject><subject>Transport</subject><subject>Vortices</subject><subject>Vorticity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0ctu1DAUBuAIgcTQsuMBLCEkFmR6fE-WVdUCUiU2sI4cX6YeJXGwM7R5Ax6bM-0IIYTEygt__o-O_6p6Q2FLgeqLfRi3DCjfyqZ5Vm2oUG2tlZDPqw0AYzWlDF5Wr0rZAypo9ab6eTnPOT3E0SyejMn5YYjTjqRAljtPBh-We5MdCUO6J2ZySPJ8l3Z-Iks2U5lTXkicHrEf-7ymKVoyYQ7pV1Jmb2NYj4E_EEYbl5WY5VHbOESc6Ug55GCsP69eBDMU__p0nlXfbq6_Xn2qb798_Hx1eVtb3jZL3aqeGtpLB8xwUFoq7lwPjoMXnJnQau2ZpLwBCzI4w6QVYHuJF40S0PCz6v1TLq79_eDL0o2xWFzbTD4dSkeVYExLQeH_VLSC46z2SN_-RffpkCdcBJXSWoKiFNWHJ2VzKiX70M0Zfz6vHYXu2GCHDXbHBjtsEPm7U6gp1gwBP9zG8vsNayjnimp021OswQqi2_k_pv8r-Bfd_quG</recordid><startdate>20140110</startdate><enddate>20140110</enddate><creator>Kuznetsov, A. V.</creator><creator>Blinov, D. G.</creator><creator>Avramenko, A. A.</creator><creator>Shevchuk, I. V.</creator><creator>Tyrinov, A. I.</creator><creator>Kuznetsov, I. A.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20140110</creationdate><title>Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface</title><author>Kuznetsov, A. V. ; Blinov, D. G. ; Avramenko, A. A. ; Shevchuk, I. V. ; Tyrinov, A. I. ; Kuznetsov, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-96b1a1b5d02a3067563ddb0d30e432af977e251380c05fda25c40cb5f97864083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Biological and medical sciences</topic><topic>Cellular biology</topic><topic>Complex syndromes</topic><topic>Computational fluid dynamics</topic><topic>Embryology</topic><topic>Flow</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Modelling</topic><topic>Transport</topic><topic>Vortices</topic><topic>Vorticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuznetsov, A. V.</creatorcontrib><creatorcontrib>Blinov, D. G.</creatorcontrib><creatorcontrib>Avramenko, A. A.</creatorcontrib><creatorcontrib>Shevchuk, I. V.</creatorcontrib><creatorcontrib>Tyrinov, A. I.</creatorcontrib><creatorcontrib>Kuznetsov, I. A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuznetsov, A. V.</au><au>Blinov, D. G.</au><au>Avramenko, A. A.</au><au>Shevchuk, I. V.</au><au>Tyrinov, A. I.</au><au>Kuznetsov, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-01-10</date><risdate>2014</risdate><volume>738</volume><spage>492</spage><epage>521</epage><pages>492-521</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also developed an approximate solution for morphogen transport in the nodal pit. The solutions were obtained utilizing the proper generalized decomposition (PGD) method. We compared our approximate solutions with the results of numerical simulation of flow caused by the rotation of 81 cilia, and obtained reasonable agreement in most of the flow domain. We discuss locations where agreement is less accurate. The obtained semi-analytical solutions simplify the analysis of flow and morphogen distribution in a nodal pit.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2013.588</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-01, Vol.738, p.492-521
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642275410
source Cambridge Journals Online
subjects Approximation
Biological and medical sciences
Cellular biology
Complex syndromes
Computational fluid dynamics
Embryology
Flow
Fluid flow
Fluid mechanics
Mathematical models
Medical genetics
Medical sciences
Modelling
Transport
Vortices
Vorticity
title Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A58%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Approximate%20modelling%20of%20the%20leftward%20flow%20and%20morphogen%20transport%20in%20the%20embryonic%20node%20by%20specifying%20vorticity%20at%20the%20ciliated%20surface&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Kuznetsov,%20A.%20V.&rft.date=2014-01-10&rft.volume=738&rft.spage=492&rft.epage=521&rft.pages=492-521&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2013.588&rft_dat=%3Cproquest_cross%3E3155475901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1467750611&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2013_588&rfr_iscdi=true