Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications

A combined geophysical‐petrological methodology to study the thermal, compositional, density, and seismological structure of lithospheric/sublithospheric domains is presented. A new finite‐element code (LitMod) is used to produce 2‐D forward models from the surface to the 410‐km discontinuity. The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochemistry, geophysics, geosystems : G3 geophysics, geosystems : G3, 2008-05, Vol.9 (5), p.np-n/a
Hauptverfasser: Afonso, J. C., Fernàndez, M., Ranalli, G., Griffin, W. L., Connolly, J. A. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 5
container_start_page np
container_title Geochemistry, geophysics, geosystems : G3
container_volume 9
creator Afonso, J. C.
Fernàndez, M.
Ranalli, G.
Griffin, W. L.
Connolly, J. A. D.
description A combined geophysical‐petrological methodology to study the thermal, compositional, density, and seismological structure of lithospheric/sublithospheric domains is presented. A new finite‐element code (LitMod) is used to produce 2‐D forward models from the surface to the 410‐km discontinuity. The code combines data from petrology, mineral physics, and geophysical observables within a self‐consistent framework. The final result is a lithospheric/sublithospheric model that simultaneously fits all geophysical observables and consequently reduces the uncertainties associated with the modeling of these observables alone or in pairs, as is commonly done. The method is illustrated by applying it to both oceanic and continental domains. We show that anelastic attenuation and uncertainties in seismic data make it unfeasible to identify compositional variations in the lithospheric mantle from seismic studies only. In the case of oceanic lithosphere, plates with thermal thicknesses of 105 ± 5 km satisfy geophysical and petrological constraints. We find that Vp are more sensitive to phase transitions than Vs, particularly in the case of the spinel‐garnet transition. A low‐velocity zone with absolute velocities and gradients comparable to those observed below ocean basins is an invariable output of our oceanic models, even when no melt effects are included. In the case of the Archean subcontinental lithospheric mantle, we show that “typical” depleted compositions (and their spatial distribution) previously thought to be representative of these mantle sections are compatible neither with geophysical nor with petrological data. A cratonic keel model consisting of (1) strongly depleted material (i.e., dunitic/harzburgitic) in the first 100–160 km depth and (2) less depleted (approximately isopycnic) lower section extending down to 220–300 km depth is necessary to satisfy elevation, geoid, SHF, seismic velocities, and petrological constraints. This highly depleted (viscous) upper layer, and its chemical isolation, may play a key role in the longevity and stability of cratons.
doi_str_mv 10.1029/2007GC001834
format Article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642274201</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1524414091</sourcerecordid><originalsourceid>FETCH-LOGICAL-a5528-4c0d2fb23ca76a4afd3a0c18c148866e1851dab8b8f6c3ca1b7f6cde0cc1c7143</originalsourceid><addsrcrecordid>eNqF0U9vFCEYBnDSaNK69eYH4OjBscDAQHszmzrbpH9sotEbYZh3drHsgMBG99LP3tmusT3ZEw_we5_Li9A7Sj5Swk5PGCGynRNCVc0P0BEVTFSMMPnqWT5Eb3L-ORkuhDpC9xdjgWUyBXq8hBBX2-ys8VWEkoIPy90Fr0MP3o1LHAZcVoC9K6uQ4woSYDP2OG-6pydn8SZGSHhtxuLhDF_B9NXvyraP2sTop9riwpiP0evB-Axv_54z9O3z-df5orq8aS_mny4rIwRTFbekZ0PHamtkY7gZ-toQS5WlXKmmAaoE7U2nOjU0dkK0k1PogVhLraS8nqH3-96Ywq8N5KLXLlvw3owQNlnThjMmOSP0ZSoY55ST0x39sKc2hZwTDDomtzZpqynRu43o5xuZONvz387D9r9Wt217TtkUZ6jaD7lc4M-_IZPudCNrKfT361YvmsXVD8m_6Nv6AVLsntc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1524414091</pqid></control><display><type>article</type><title>Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications</title><source>Wiley Online Library Open Access</source><creator>Afonso, J. C. ; Fernàndez, M. ; Ranalli, G. ; Griffin, W. L. ; Connolly, J. A. D.</creator><creatorcontrib>Afonso, J. C. ; Fernàndez, M. ; Ranalli, G. ; Griffin, W. L. ; Connolly, J. A. D.</creatorcontrib><description>A combined geophysical‐petrological methodology to study the thermal, compositional, density, and seismological structure of lithospheric/sublithospheric domains is presented. A new finite‐element code (LitMod) is used to produce 2‐D forward models from the surface to the 410‐km discontinuity. The code combines data from petrology, mineral physics, and geophysical observables within a self‐consistent framework. The final result is a lithospheric/sublithospheric model that simultaneously fits all geophysical observables and consequently reduces the uncertainties associated with the modeling of these observables alone or in pairs, as is commonly done. The method is illustrated by applying it to both oceanic and continental domains. We show that anelastic attenuation and uncertainties in seismic data make it unfeasible to identify compositional variations in the lithospheric mantle from seismic studies only. In the case of oceanic lithosphere, plates with thermal thicknesses of 105 ± 5 km satisfy geophysical and petrological constraints. We find that Vp are more sensitive to phase transitions than Vs, particularly in the case of the spinel‐garnet transition. A low‐velocity zone with absolute velocities and gradients comparable to those observed below ocean basins is an invariable output of our oceanic models, even when no melt effects are included. In the case of the Archean subcontinental lithospheric mantle, we show that “typical” depleted compositions (and their spatial distribution) previously thought to be representative of these mantle sections are compatible neither with geophysical nor with petrological data. A cratonic keel model consisting of (1) strongly depleted material (i.e., dunitic/harzburgitic) in the first 100–160 km depth and (2) less depleted (approximately isopycnic) lower section extending down to 220–300 km depth is necessary to satisfy elevation, geoid, SHF, seismic velocities, and petrological constraints. This highly depleted (viscous) upper layer, and its chemical isolation, may play a key role in the longevity and stability of cratons.</description><identifier>ISSN: 1525-2027</identifier><identifier>EISSN: 1525-2027</identifier><identifier>DOI: 10.1029/2007GC001834</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Archean lithosphere ; Density ; Depletion ; Geophysics ; Lithosphere ; Mantle ; mantle composition ; Methodology ; modeling ; oceanic lithosphere ; seismic attenuation ; Seismic phenomena ; Uncertainty ; xenoliths</subject><ispartof>Geochemistry, geophysics, geosystems : G3, 2008-05, Vol.9 (5), p.np-n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a5528-4c0d2fb23ca76a4afd3a0c18c148866e1851dab8b8f6c3ca1b7f6cde0cc1c7143</citedby><cites>FETCH-LOGICAL-a5528-4c0d2fb23ca76a4afd3a0c18c148866e1851dab8b8f6c3ca1b7f6cde0cc1c7143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007GC001834$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007GC001834$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,11562,27924,27925,45574,45575,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1029%2F2007GC001834$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Afonso, J. C.</creatorcontrib><creatorcontrib>Fernàndez, M.</creatorcontrib><creatorcontrib>Ranalli, G.</creatorcontrib><creatorcontrib>Griffin, W. L.</creatorcontrib><creatorcontrib>Connolly, J. A. D.</creatorcontrib><title>Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications</title><title>Geochemistry, geophysics, geosystems : G3</title><addtitle>Geochem. Geophys. Geosyst</addtitle><description>A combined geophysical‐petrological methodology to study the thermal, compositional, density, and seismological structure of lithospheric/sublithospheric domains is presented. A new finite‐element code (LitMod) is used to produce 2‐D forward models from the surface to the 410‐km discontinuity. The code combines data from petrology, mineral physics, and geophysical observables within a self‐consistent framework. The final result is a lithospheric/sublithospheric model that simultaneously fits all geophysical observables and consequently reduces the uncertainties associated with the modeling of these observables alone or in pairs, as is commonly done. The method is illustrated by applying it to both oceanic and continental domains. We show that anelastic attenuation and uncertainties in seismic data make it unfeasible to identify compositional variations in the lithospheric mantle from seismic studies only. In the case of oceanic lithosphere, plates with thermal thicknesses of 105 ± 5 km satisfy geophysical and petrological constraints. We find that Vp are more sensitive to phase transitions than Vs, particularly in the case of the spinel‐garnet transition. A low‐velocity zone with absolute velocities and gradients comparable to those observed below ocean basins is an invariable output of our oceanic models, even when no melt effects are included. In the case of the Archean subcontinental lithospheric mantle, we show that “typical” depleted compositions (and their spatial distribution) previously thought to be representative of these mantle sections are compatible neither with geophysical nor with petrological data. A cratonic keel model consisting of (1) strongly depleted material (i.e., dunitic/harzburgitic) in the first 100–160 km depth and (2) less depleted (approximately isopycnic) lower section extending down to 220–300 km depth is necessary to satisfy elevation, geoid, SHF, seismic velocities, and petrological constraints. This highly depleted (viscous) upper layer, and its chemical isolation, may play a key role in the longevity and stability of cratons.</description><subject>Archean lithosphere</subject><subject>Density</subject><subject>Depletion</subject><subject>Geophysics</subject><subject>Lithosphere</subject><subject>Mantle</subject><subject>mantle composition</subject><subject>Methodology</subject><subject>modeling</subject><subject>oceanic lithosphere</subject><subject>seismic attenuation</subject><subject>Seismic phenomena</subject><subject>Uncertainty</subject><subject>xenoliths</subject><issn>1525-2027</issn><issn>1525-2027</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqF0U9vFCEYBnDSaNK69eYH4OjBscDAQHszmzrbpH9sotEbYZh3drHsgMBG99LP3tmusT3ZEw_we5_Li9A7Sj5Swk5PGCGynRNCVc0P0BEVTFSMMPnqWT5Eb3L-ORkuhDpC9xdjgWUyBXq8hBBX2-ys8VWEkoIPy90Fr0MP3o1LHAZcVoC9K6uQ4woSYDP2OG-6pydn8SZGSHhtxuLhDF_B9NXvyraP2sTop9riwpiP0evB-Axv_54z9O3z-df5orq8aS_mny4rIwRTFbekZ0PHamtkY7gZ-toQS5WlXKmmAaoE7U2nOjU0dkK0k1PogVhLraS8nqH3-96Ywq8N5KLXLlvw3owQNlnThjMmOSP0ZSoY55ST0x39sKc2hZwTDDomtzZpqynRu43o5xuZONvz387D9r9Wt217TtkUZ6jaD7lc4M-_IZPudCNrKfT361YvmsXVD8m_6Nv6AVLsntc</recordid><startdate>200805</startdate><enddate>200805</enddate><creator>Afonso, J. C.</creator><creator>Fernàndez, M.</creator><creator>Ranalli, G.</creator><creator>Griffin, W. L.</creator><creator>Connolly, J. A. D.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>200805</creationdate><title>Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications</title><author>Afonso, J. C. ; Fernàndez, M. ; Ranalli, G. ; Griffin, W. L. ; Connolly, J. A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a5528-4c0d2fb23ca76a4afd3a0c18c148866e1851dab8b8f6c3ca1b7f6cde0cc1c7143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Archean lithosphere</topic><topic>Density</topic><topic>Depletion</topic><topic>Geophysics</topic><topic>Lithosphere</topic><topic>Mantle</topic><topic>mantle composition</topic><topic>Methodology</topic><topic>modeling</topic><topic>oceanic lithosphere</topic><topic>seismic attenuation</topic><topic>Seismic phenomena</topic><topic>Uncertainty</topic><topic>xenoliths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Afonso, J. C.</creatorcontrib><creatorcontrib>Fernàndez, M.</creatorcontrib><creatorcontrib>Ranalli, G.</creatorcontrib><creatorcontrib>Griffin, W. L.</creatorcontrib><creatorcontrib>Connolly, J. A. D.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Afonso, J. C.</au><au>Fernàndez, M.</au><au>Ranalli, G.</au><au>Griffin, W. L.</au><au>Connolly, J. A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications</atitle><jtitle>Geochemistry, geophysics, geosystems : G3</jtitle><addtitle>Geochem. Geophys. Geosyst</addtitle><date>2008-05</date><risdate>2008</risdate><volume>9</volume><issue>5</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>1525-2027</issn><eissn>1525-2027</eissn><abstract>A combined geophysical‐petrological methodology to study the thermal, compositional, density, and seismological structure of lithospheric/sublithospheric domains is presented. A new finite‐element code (LitMod) is used to produce 2‐D forward models from the surface to the 410‐km discontinuity. The code combines data from petrology, mineral physics, and geophysical observables within a self‐consistent framework. The final result is a lithospheric/sublithospheric model that simultaneously fits all geophysical observables and consequently reduces the uncertainties associated with the modeling of these observables alone or in pairs, as is commonly done. The method is illustrated by applying it to both oceanic and continental domains. We show that anelastic attenuation and uncertainties in seismic data make it unfeasible to identify compositional variations in the lithospheric mantle from seismic studies only. In the case of oceanic lithosphere, plates with thermal thicknesses of 105 ± 5 km satisfy geophysical and petrological constraints. We find that Vp are more sensitive to phase transitions than Vs, particularly in the case of the spinel‐garnet transition. A low‐velocity zone with absolute velocities and gradients comparable to those observed below ocean basins is an invariable output of our oceanic models, even when no melt effects are included. In the case of the Archean subcontinental lithospheric mantle, we show that “typical” depleted compositions (and their spatial distribution) previously thought to be representative of these mantle sections are compatible neither with geophysical nor with petrological data. A cratonic keel model consisting of (1) strongly depleted material (i.e., dunitic/harzburgitic) in the first 100–160 km depth and (2) less depleted (approximately isopycnic) lower section extending down to 220–300 km depth is necessary to satisfy elevation, geoid, SHF, seismic velocities, and petrological constraints. This highly depleted (viscous) upper layer, and its chemical isolation, may play a key role in the longevity and stability of cratons.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007GC001834</doi><tpages>36</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1525-2027
ispartof Geochemistry, geophysics, geosystems : G3, 2008-05, Vol.9 (5), p.np-n/a
issn 1525-2027
1525-2027
language eng
recordid cdi_proquest_miscellaneous_1642274201
source Wiley Online Library Open Access
subjects Archean lithosphere
Density
Depletion
Geophysics
Lithosphere
Mantle
mantle composition
Methodology
modeling
oceanic lithosphere
seismic attenuation
Seismic phenomena
Uncertainty
xenoliths
title Integrated geophysical-petrological modeling of the lithosphere and sublithospheric upper mantle: Methodology and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A45%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20geophysical-petrological%20modeling%20of%20the%20lithosphere%20and%20sublithospheric%20upper%20mantle:%20Methodology%20and%20applications&rft.jtitle=Geochemistry,%20geophysics,%20geosystems%20:%20G3&rft.au=Afonso,%20J.%20C.&rft.date=2008-05&rft.volume=9&rft.issue=5&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=1525-2027&rft.eissn=1525-2027&rft_id=info:doi/10.1029/2007GC001834&rft_dat=%3Cproquest_24P%3E1524414091%3C/proquest_24P%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1524414091&rft_id=info:pmid/&rfr_iscdi=true