Chemical evolution of a gas-capped deep aquifer, southwest of Iran
The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type wat...
Gespeichert in:
Veröffentlicht in: | Environmental earth sciences 2014-04, Vol.71 (7), p.3171-3180 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3180 |
---|---|
container_issue | 7 |
container_start_page | 3171 |
container_title | Environmental earth sciences |
container_volume | 71 |
creator | Bagheri, Rahim Nadri, Arash Raeisi, Ezzat Shariati, Ali Mirbagheri, Mahmud Bahadori, Farahtaj |
description | The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO₄ and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO₄ and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caₑₓcₑₛₛ versus Mgdₑfᵢcᵢₜ, is proposed to evaluate the dolomitization process. |
doi_str_mv | 10.1007/s12665-013-2705-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642273743</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3241967051</sourcerecordid><originalsourceid>FETCH-LOGICAL-a459t-6d4a6c7c7904d819ac532df5ba14a461ffd68d51be3d1db78292100de3d7480e3</originalsourceid><addsrcrecordid>eNqFkU1r3DAQhk1oICHND8gphlDooW5m9O1jsvQjEOghyVnMWtLGwWs50rql_75aHELoodVFGvS8LzPzVtUZwmcE0JcZmVKyAeQN0yAbcVAdo1GqUaxt372-DRxVpzk_QTkceQvquLpePfpt39FQ-59xmHd9HOsYaqo3lJuOpsm72nk_1fQ898GnT3WO8-7xl8-7PXeTaHxfHQYasj99uU-qh69f7lffm9sf325WV7cNCdnuGuUEqU53ugXhDLbUSc5ckGtCQUJhCE4ZJ3HtuUO31oa1rEznSqmFAc9Pqo-L75Ti81wasNs-d34YaPRxzhaVYExzLfj_UcmAa6URC3rxF_oU5zSWQQoFUkgQ7Z7ChepSzDn5YKfUbyn9tgh2n4FdMrAlA7vPwIqi-fDiTLksOJRVdX1-FTLD0QgjC8cWLpevcePTmw7-YX6-iAJFS5tUjB_uGKAAQJBSKP4HUy6ccg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1505450491</pqid></control><display><type>article</type><title>Chemical evolution of a gas-capped deep aquifer, southwest of Iran</title><source>SpringerLink Journals - AutoHoldings</source><creator>Bagheri, Rahim ; Nadri, Arash ; Raeisi, Ezzat ; Shariati, Ali ; Mirbagheri, Mahmud ; Bahadori, Farahtaj</creator><creatorcontrib>Bagheri, Rahim ; Nadri, Arash ; Raeisi, Ezzat ; Shariati, Ali ; Mirbagheri, Mahmud ; Bahadori, Farahtaj</creatorcontrib><description>The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO₄ and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO₄ and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caₑₓcₑₛₛ versus Mgdₑfᵢcᵢₜ, is proposed to evaluate the dolomitization process.</description><identifier>ISSN: 1866-6280</identifier><identifier>EISSN: 1866-6299</identifier><identifier>DOI: 10.1007/s12665-013-2705-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Aquifers ; Bacteria ; Biogeosciences ; Brine ; calcium ; Chemical evolution ; Diagenesis ; Dissolved solids ; Dolomite ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Environmental Science and Engineering ; Evaporation ; Exact sciences and technology ; Geochemistry ; Geology ; Hydrogeology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; ion exchange ; Ions ; Limestone ; Magnesium ; Manganese ; Original Article ; Reservoirs ; Rocks ; Sandstone ; Sea water ; Seawater ; sodium ; Strontium ; Terrestrial Pollution ; Trace elements ; Triassic</subject><ispartof>Environmental earth sciences, 2014-04, Vol.71 (7), p.3171-3180</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a459t-6d4a6c7c7904d819ac532df5ba14a461ffd68d51be3d1db78292100de3d7480e3</citedby><cites>FETCH-LOGICAL-a459t-6d4a6c7c7904d819ac532df5ba14a461ffd68d51be3d1db78292100de3d7480e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12665-013-2705-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12665-013-2705-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28318485$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagheri, Rahim</creatorcontrib><creatorcontrib>Nadri, Arash</creatorcontrib><creatorcontrib>Raeisi, Ezzat</creatorcontrib><creatorcontrib>Shariati, Ali</creatorcontrib><creatorcontrib>Mirbagheri, Mahmud</creatorcontrib><creatorcontrib>Bahadori, Farahtaj</creatorcontrib><title>Chemical evolution of a gas-capped deep aquifer, southwest of Iran</title><title>Environmental earth sciences</title><addtitle>Environ Earth Sci</addtitle><description>The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO₄ and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO₄ and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caₑₓcₑₛₛ versus Mgdₑfᵢcᵢₜ, is proposed to evaluate the dolomitization process.</description><subject>Aquifers</subject><subject>Bacteria</subject><subject>Biogeosciences</subject><subject>Brine</subject><subject>calcium</subject><subject>Chemical evolution</subject><subject>Diagenesis</subject><subject>Dissolved solids</subject><subject>Dolomite</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental Science and Engineering</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Hydrogeology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>ion exchange</subject><subject>Ions</subject><subject>Limestone</subject><subject>Magnesium</subject><subject>Manganese</subject><subject>Original Article</subject><subject>Reservoirs</subject><subject>Rocks</subject><subject>Sandstone</subject><subject>Sea water</subject><subject>Seawater</subject><subject>sodium</subject><subject>Strontium</subject><subject>Terrestrial Pollution</subject><subject>Trace elements</subject><subject>Triassic</subject><issn>1866-6280</issn><issn>1866-6299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkU1r3DAQhk1oICHND8gphlDooW5m9O1jsvQjEOghyVnMWtLGwWs50rql_75aHELoodVFGvS8LzPzVtUZwmcE0JcZmVKyAeQN0yAbcVAdo1GqUaxt372-DRxVpzk_QTkceQvquLpePfpt39FQ-59xmHd9HOsYaqo3lJuOpsm72nk_1fQ898GnT3WO8-7xl8-7PXeTaHxfHQYasj99uU-qh69f7lffm9sf325WV7cNCdnuGuUEqU53ugXhDLbUSc5ckGtCQUJhCE4ZJ3HtuUO31oa1rEznSqmFAc9Pqo-L75Ti81wasNs-d34YaPRxzhaVYExzLfj_UcmAa6URC3rxF_oU5zSWQQoFUkgQ7Z7ChepSzDn5YKfUbyn9tgh2n4FdMrAlA7vPwIqi-fDiTLksOJRVdX1-FTLD0QgjC8cWLpevcePTmw7-YX6-iAJFS5tUjB_uGKAAQJBSKP4HUy6ccg</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Bagheri, Rahim</creator><creator>Nadri, Arash</creator><creator>Raeisi, Ezzat</creator><creator>Shariati, Ali</creator><creator>Mirbagheri, Mahmud</creator><creator>Bahadori, Farahtaj</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7QH</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20140401</creationdate><title>Chemical evolution of a gas-capped deep aquifer, southwest of Iran</title><author>Bagheri, Rahim ; Nadri, Arash ; Raeisi, Ezzat ; Shariati, Ali ; Mirbagheri, Mahmud ; Bahadori, Farahtaj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a459t-6d4a6c7c7904d819ac532df5ba14a461ffd68d51be3d1db78292100de3d7480e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aquifers</topic><topic>Bacteria</topic><topic>Biogeosciences</topic><topic>Brine</topic><topic>calcium</topic><topic>Chemical evolution</topic><topic>Diagenesis</topic><topic>Dissolved solids</topic><topic>Dolomite</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental Science and Engineering</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Hydrogeology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>ion exchange</topic><topic>Ions</topic><topic>Limestone</topic><topic>Magnesium</topic><topic>Manganese</topic><topic>Original Article</topic><topic>Reservoirs</topic><topic>Rocks</topic><topic>Sandstone</topic><topic>Sea water</topic><topic>Seawater</topic><topic>sodium</topic><topic>Strontium</topic><topic>Terrestrial Pollution</topic><topic>Trace elements</topic><topic>Triassic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagheri, Rahim</creatorcontrib><creatorcontrib>Nadri, Arash</creatorcontrib><creatorcontrib>Raeisi, Ezzat</creatorcontrib><creatorcontrib>Shariati, Ali</creatorcontrib><creatorcontrib>Mirbagheri, Mahmud</creatorcontrib><creatorcontrib>Bahadori, Farahtaj</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Aqualine</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Environmental earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagheri, Rahim</au><au>Nadri, Arash</au><au>Raeisi, Ezzat</au><au>Shariati, Ali</au><au>Mirbagheri, Mahmud</au><au>Bahadori, Farahtaj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical evolution of a gas-capped deep aquifer, southwest of Iran</atitle><jtitle>Environmental earth sciences</jtitle><stitle>Environ Earth Sci</stitle><date>2014-04-01</date><risdate>2014</risdate><volume>71</volume><issue>7</issue><spage>3171</spage><epage>3180</epage><pages>3171-3180</pages><issn>1866-6280</issn><eissn>1866-6299</eissn><abstract>The Kangan Aquifer (KA) is located below a gas reservoir in the crest of the Kangan Anticline, southwest of Iran. This aquifer is composed of Permo-Triassic limestone, dolomite, sandstone, anhydrite and shale. It is characterized by a total dissolved solid of about 332,000 mg/L and Na–Ca–Cl-type water. A previous study showed that the source of the KA waters is evaporated seawater. Chemical evolution of the KA is the main objective of this study. The major, minor and trace element concentrations of the KA waters were measured. The chemical evolution of KA waters occurred by three different processes: evaporation of seawater, water–rock and water–gas interactions. Due to the seawater evaporation process, the concentration of all ions in the KA waters increased up to saturation levels. In comparison to the evaporated seawater, the higher concentrations of Ca, Li, Sr, I, Mn and B and lower concentrations of Mg, SO₄ and Na and no changes in concentrations of Cl and K ions are observed in the KA waters. Based on the chemical evolution after seawater evaporation, the KA waters are classified into four groups: (1) no evolution (Cl, K ions), (2) water–rock interaction (Na, Ca, Mg, Li and Sr ions), (3) water–gas interaction (SO₄ and I ions) and (4) both water–rock and water–gas interactions (Mn and B ions). The chemical evolution processes of the KA waters include dolomitization, precipitation, ion exchange and recrystallization in water–rock interaction. Bacterial reduction and diagenesis of organic material in water–gas interaction also occur. A new type of chart, Caₑₓcₑₛₛ versus Mgdₑfᵢcᵢₜ, is proposed to evaluate the dolomitization process.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s12665-013-2705-4</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1866-6280 |
ispartof | Environmental earth sciences, 2014-04, Vol.71 (7), p.3171-3180 |
issn | 1866-6280 1866-6299 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642273743 |
source | SpringerLink Journals - AutoHoldings |
subjects | Aquifers Bacteria Biogeosciences Brine calcium Chemical evolution Diagenesis Dissolved solids Dolomite Earth and Environmental Science Earth Sciences Earth, ocean, space Environmental Science and Engineering Evaporation Exact sciences and technology Geochemistry Geology Hydrogeology Hydrology. Hydrogeology Hydrology/Water Resources ion exchange Ions Limestone Magnesium Manganese Original Article Reservoirs Rocks Sandstone Sea water Seawater sodium Strontium Terrestrial Pollution Trace elements Triassic |
title | Chemical evolution of a gas-capped deep aquifer, southwest of Iran |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T07%3A35%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20evolution%20of%20a%20gas-capped%20deep%20aquifer,%20southwest%20of%20Iran&rft.jtitle=Environmental%20earth%20sciences&rft.au=Bagheri,%20Rahim&rft.date=2014-04-01&rft.volume=71&rft.issue=7&rft.spage=3171&rft.epage=3180&rft.pages=3171-3180&rft.issn=1866-6280&rft.eissn=1866-6299&rft_id=info:doi/10.1007/s12665-013-2705-4&rft_dat=%3Cproquest_cross%3E3241967051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1505450491&rft_id=info:pmid/&rfr_iscdi=true |