Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations

Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in detail in an icing database, most of which include an e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied meteorology and climatology 2013-10, Vol.52 (10), p.2189-2203
Hauptverfasser: Nygaard, Bjørn Egil Kringlebotn, Ágústsson, Hálfdán, Somfalvi-Tóth, Katalin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2203
container_issue 10
container_start_page 2189
container_title Journal of applied meteorology and climatology
container_volume 52
creator Nygaard, Bjørn Egil Kringlebotn
Ágústsson, Hálfdán
Somfalvi-Tóth, Katalin
description Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in detail in an icing database, most of which include an estimate of the mean and maximum diameter of observed icing on overhead power conductors. Observations of weather are furthermore available from a dense network of weather stations. The existing models for wet snow accretion on a standard cylinder are updated with realistic values for the terminal fall speed of wet snowflakes together with a snowflake liquid fraction–based criterion to identify wet snow. The widely used parameterization of the sticking efficiency is found to strongly underestimate the accretion rate. A calibrated parameterization of the sticking efficiency is suggested on the basis of long-term statistics of observed and modeled wet snow loads. Application of the improved method is demonstrated in a high-resolution simulation for a case of observed widespread and intensive wet snow icing in south Iceland. The results form a basis for mapping the climatology of wet snow icing in the complex terrain of Iceland as well as for preparing operational forecasts of wet snow icing and severe weather for overhead power transmission lines in complex terrain.
doi_str_mv 10.1175/jamc-d-12-0332.1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642271749</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26175897</jstor_id><sourcerecordid>26175897</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-f6e8dca4d102a6f12c40afa0c514e1889252901adf816b5911f8150da9e534663</originalsourceid><addsrcrecordid>eNqFkc1Lw0AQxYMoWKt3L0JABBFSd2Y_sjmW-k2LgorHZd1sJCHN1t2U4n9vQksFDwoD82B-78HwougYyAgg5ZeVnpskTwATQimOYCcaAOcykYzi7lYj248OQqgIYSxN-SC6mLnc1mXzEb_ZNn5u3CoeG-NtW7om7ubJrayPp2Vjw2G0V-g62KPNHkavN9cvk7tk-nh7PxlPE8ORt0khrMyNZjkQ1KIANIzoQhPDgVmQMkOOGQGdFxLEO88AOsFJrjPLKROCDqPzde7Cu8-lDa2al8HYutaNdcugQDDEFFKW_Y8yJhE5o6xDT3-hlVv6pntEoUTOqZAU_6KAcSIyCrKnyJoy3oXgbaEWvpxr_6WAqL4N9TCeTdSVAlR9Gwo6y9kmWAej68LrxpRh68NU0pSTnjtZc1Vonf-5iy5VZin9BvtCj2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1450693182</pqid></control><display><type>article</type><title>Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations</title><source>Jstor Complete Legacy</source><source>American Meteorological Society</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Nygaard, Bjørn Egil Kringlebotn ; Ágústsson, Hálfdán ; Somfalvi-Tóth, Katalin</creator><creatorcontrib>Nygaard, Bjørn Egil Kringlebotn ; Ágústsson, Hálfdán ; Somfalvi-Tóth, Katalin</creatorcontrib><description>Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in detail in an icing database, most of which include an estimate of the mean and maximum diameter of observed icing on overhead power conductors. Observations of weather are furthermore available from a dense network of weather stations. The existing models for wet snow accretion on a standard cylinder are updated with realistic values for the terminal fall speed of wet snowflakes together with a snowflake liquid fraction–based criterion to identify wet snow. The widely used parameterization of the sticking efficiency is found to strongly underestimate the accretion rate. A calibrated parameterization of the sticking efficiency is suggested on the basis of long-term statistics of observed and modeled wet snow loads. Application of the improved method is demonstrated in a high-resolution simulation for a case of observed widespread and intensive wet snow icing in south Iceland. The results form a basis for mapping the climatology of wet snow icing in the complex terrain of Iceland as well as for preparing operational forecasts of wet snow icing and severe weather for overhead power transmission lines in complex terrain.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-12-0332.1</identifier><identifier>CODEN: JOAMEZ</identifier><language>eng</language><publisher>Boston, MA: American Meteorological Society</publisher><subject>Accretion ; Applied sciences ; Atmospherics ; Blackouts ; Climate models ; Climatology ; Computer simulation ; Confidence intervals ; Cylinders ; Deposition ; Earth, ocean, space ; Efficiency ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; Electricity ; Electricity distribution ; Exact sciences and technology ; External geophysics ; Humidity ; Ice ; Ice formation ; Icing ; Meteorology ; Modelling ; Overhead networks ; Parameterization ; Parametric models ; Parametrization ; Power lines ; Power networks and lines ; Precipitation ; Severe weather ; Snow ; Snow loads ; Snow. Ice. Glaciers ; Snowflakes ; Statistical methods ; Storms ; Terrain ; Transmission lines ; Weather ; Weather forecasting ; Weather stations ; Wind velocity</subject><ispartof>Journal of applied meteorology and climatology, 2013-10, Vol.52 (10), p.2189-2203</ispartof><rights>2013 American Meteorological Society</rights><rights>2015 INIST-CNRS</rights><rights>Copyright American Meteorological Society Oct 2013</rights><rights>Copyright American Meteorological Society 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-f6e8dca4d102a6f12c40afa0c514e1889252901adf816b5911f8150da9e534663</citedby><cites>FETCH-LOGICAL-c525t-f6e8dca4d102a6f12c40afa0c514e1889252901adf816b5911f8150da9e534663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26175897$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26175897$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,3668,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27837501$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nygaard, Bjørn Egil Kringlebotn</creatorcontrib><creatorcontrib>Ágústsson, Hálfdán</creatorcontrib><creatorcontrib>Somfalvi-Tóth, Katalin</creatorcontrib><title>Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations</title><title>Journal of applied meteorology and climatology</title><description>Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in detail in an icing database, most of which include an estimate of the mean and maximum diameter of observed icing on overhead power conductors. Observations of weather are furthermore available from a dense network of weather stations. The existing models for wet snow accretion on a standard cylinder are updated with realistic values for the terminal fall speed of wet snowflakes together with a snowflake liquid fraction–based criterion to identify wet snow. The widely used parameterization of the sticking efficiency is found to strongly underestimate the accretion rate. A calibrated parameterization of the sticking efficiency is suggested on the basis of long-term statistics of observed and modeled wet snow loads. Application of the improved method is demonstrated in a high-resolution simulation for a case of observed widespread and intensive wet snow icing in south Iceland. The results form a basis for mapping the climatology of wet snow icing in the complex terrain of Iceland as well as for preparing operational forecasts of wet snow icing and severe weather for overhead power transmission lines in complex terrain.</description><subject>Accretion</subject><subject>Applied sciences</subject><subject>Atmospherics</subject><subject>Blackouts</subject><subject>Climate models</subject><subject>Climatology</subject><subject>Computer simulation</subject><subject>Confidence intervals</subject><subject>Cylinders</subject><subject>Deposition</subject><subject>Earth, ocean, space</subject><subject>Efficiency</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>Electricity</subject><subject>Electricity distribution</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>Humidity</subject><subject>Ice</subject><subject>Ice formation</subject><subject>Icing</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Overhead networks</subject><subject>Parameterization</subject><subject>Parametric models</subject><subject>Parametrization</subject><subject>Power lines</subject><subject>Power networks and lines</subject><subject>Precipitation</subject><subject>Severe weather</subject><subject>Snow</subject><subject>Snow loads</subject><subject>Snow. Ice. Glaciers</subject><subject>Snowflakes</subject><subject>Statistical methods</subject><subject>Storms</subject><subject>Terrain</subject><subject>Transmission lines</subject><subject>Weather</subject><subject>Weather forecasting</subject><subject>Weather stations</subject><subject>Wind velocity</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkc1Lw0AQxYMoWKt3L0JABBFSd2Y_sjmW-k2LgorHZd1sJCHN1t2U4n9vQksFDwoD82B-78HwougYyAgg5ZeVnpskTwATQimOYCcaAOcykYzi7lYj248OQqgIYSxN-SC6mLnc1mXzEb_ZNn5u3CoeG-NtW7om7ubJrayPp2Vjw2G0V-g62KPNHkavN9cvk7tk-nh7PxlPE8ORt0khrMyNZjkQ1KIANIzoQhPDgVmQMkOOGQGdFxLEO88AOsFJrjPLKROCDqPzde7Cu8-lDa2al8HYutaNdcugQDDEFFKW_Y8yJhE5o6xDT3-hlVv6pntEoUTOqZAU_6KAcSIyCrKnyJoy3oXgbaEWvpxr_6WAqL4N9TCeTdSVAlR9Gwo6y9kmWAej68LrxpRh68NU0pSTnjtZc1Vonf-5iy5VZin9BvtCj2Q</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Nygaard, Bjørn Egil Kringlebotn</creator><creator>Ágústsson, Hálfdán</creator><creator>Somfalvi-Tóth, Katalin</creator><general>American Meteorological Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope><scope>7TN</scope></search><sort><creationdate>20131001</creationdate><title>Modeling Wet Snow Accretion on Power Lines</title><author>Nygaard, Bjørn Egil Kringlebotn ; Ágústsson, Hálfdán ; Somfalvi-Tóth, Katalin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-f6e8dca4d102a6f12c40afa0c514e1889252901adf816b5911f8150da9e534663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Accretion</topic><topic>Applied sciences</topic><topic>Atmospherics</topic><topic>Blackouts</topic><topic>Climate models</topic><topic>Climatology</topic><topic>Computer simulation</topic><topic>Confidence intervals</topic><topic>Cylinders</topic><topic>Deposition</topic><topic>Earth, ocean, space</topic><topic>Efficiency</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>Electricity</topic><topic>Electricity distribution</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>Humidity</topic><topic>Ice</topic><topic>Ice formation</topic><topic>Icing</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Overhead networks</topic><topic>Parameterization</topic><topic>Parametric models</topic><topic>Parametrization</topic><topic>Power lines</topic><topic>Power networks and lines</topic><topic>Precipitation</topic><topic>Severe weather</topic><topic>Snow</topic><topic>Snow loads</topic><topic>Snow. Ice. Glaciers</topic><topic>Snowflakes</topic><topic>Statistical methods</topic><topic>Storms</topic><topic>Terrain</topic><topic>Transmission lines</topic><topic>Weather</topic><topic>Weather forecasting</topic><topic>Weather stations</topic><topic>Wind velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nygaard, Bjørn Egil Kringlebotn</creatorcontrib><creatorcontrib>Ágústsson, Hálfdán</creatorcontrib><creatorcontrib>Somfalvi-Tóth, Katalin</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><collection>Oceanic Abstracts</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nygaard, Bjørn Egil Kringlebotn</au><au>Ágústsson, Hálfdán</au><au>Somfalvi-Tóth, Katalin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>52</volume><issue>10</issue><spage>2189</spage><epage>2203</epage><pages>2189-2203</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><coden>JOAMEZ</coden><abstract>Methods to model wet snow accretion on structures are developed and improved, based on unique records of wet snow icing events as well as large datasets of observed and simulated weather. Hundreds of observed wet snow icing events are logged in detail in an icing database, most of which include an estimate of the mean and maximum diameter of observed icing on overhead power conductors. Observations of weather are furthermore available from a dense network of weather stations. The existing models for wet snow accretion on a standard cylinder are updated with realistic values for the terminal fall speed of wet snowflakes together with a snowflake liquid fraction–based criterion to identify wet snow. The widely used parameterization of the sticking efficiency is found to strongly underestimate the accretion rate. A calibrated parameterization of the sticking efficiency is suggested on the basis of long-term statistics of observed and modeled wet snow loads. Application of the improved method is demonstrated in a high-resolution simulation for a case of observed widespread and intensive wet snow icing in south Iceland. The results form a basis for mapping the climatology of wet snow icing in the complex terrain of Iceland as well as for preparing operational forecasts of wet snow icing and severe weather for overhead power transmission lines in complex terrain.</abstract><cop>Boston, MA</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-12-0332.1</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2013-10, Vol.52 (10), p.2189-2203
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_miscellaneous_1642271749
source Jstor Complete Legacy; American Meteorological Society; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Accretion
Applied sciences
Atmospherics
Blackouts
Climate models
Climatology
Computer simulation
Confidence intervals
Cylinders
Deposition
Earth, ocean, space
Efficiency
Electrical engineering. Electrical power engineering
Electrical power engineering
Electricity
Electricity distribution
Exact sciences and technology
External geophysics
Humidity
Ice
Ice formation
Icing
Meteorology
Modelling
Overhead networks
Parameterization
Parametric models
Parametrization
Power lines
Power networks and lines
Precipitation
Severe weather
Snow
Snow loads
Snow. Ice. Glaciers
Snowflakes
Statistical methods
Storms
Terrain
Transmission lines
Weather
Weather forecasting
Weather stations
Wind velocity
title Modeling Wet Snow Accretion on Power Lines: Improvements to Previous Methods Using 50 Years of Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T18%3A51%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20Wet%20Snow%20Accretion%20on%20Power%20Lines:%20Improvements%20to%20Previous%20Methods%20Using%2050%20Years%20of%20Observations&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Nygaard,%20Bj%C3%B8rn%20Egil%20Kringlebotn&rft.date=2013-10-01&rft.volume=52&rft.issue=10&rft.spage=2189&rft.epage=2203&rft.pages=2189-2203&rft.issn=1558-8424&rft.eissn=1558-8432&rft.coden=JOAMEZ&rft_id=info:doi/10.1175/jamc-d-12-0332.1&rft_dat=%3Cjstor_proqu%3E26175897%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1450693182&rft_id=info:pmid/&rft_jstor_id=26175897&rfr_iscdi=true