A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid

In the present study, we performed molecular dynamics (MD) simulations of the self-assembled monolayer (SAM) and alkane solvent interface. In particular, 1-dodecanethiol (C12H25S) SAM chemisorbed on a gold substrate contacting with n-dodecane (C12H26) solvent was examined to compare the heat transfe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2014-11, Vol.78, p.630-635
Hauptverfasser: Kikugawa, Gota, Ohara, Taku, Kawaguchi, Tohru, Kinefuchi, Ikuya, Matsumoto, Yoichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 635
container_issue
container_start_page 630
container_title International journal of heat and mass transfer
container_volume 78
creator Kikugawa, Gota
Ohara, Taku
Kawaguchi, Tohru
Kinefuchi, Ikuya
Matsumoto, Yoichiro
description In the present study, we performed molecular dynamics (MD) simulations of the self-assembled monolayer (SAM) and alkane solvent interface. In particular, 1-dodecanethiol (C12H25S) SAM chemisorbed on a gold substrate contacting with n-dodecane (C12H26) solvent was examined to compare the heat transfer mechanisms inside both the SAM and solvent phases from a microscopic viewpoint. The nonequilibrium MD (NEMD) simulation, in which a constant heat flux across the SAM interface was imposed, was performed. Here, we introduced the novel approach to clarify the molecular-scale mechanism on heat conduction in both SAM and alkane solvent. This approach enables us to decompose the macroscopic heat flux into the microscopic “building blocks”, i.e., the contribution of energy transfer associated with molecular motion and those of energy exchange by intermolecular (nonbonded) and intramolecular (covalent bond) interactions. Interestingly, we have obviously demonstrated that inside the SAM layer, almost all of the energy is transferred by the intramolecular interaction along the alkyl chain. On the other hand, inside the alkane liquid, the intramolecular and intermolecular interactions have similar contributions to the total heat flux in spite of the same molecular structure and alkyl chain length as the SAM molecules. This striking difference in heat conduction mechanism originates from the ordering structure of alkyl chains in the SAM layer.
doi_str_mv 10.1016/j.ijheatmasstransfer.2014.07.040
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642270176</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931014006292</els_id><sourcerecordid>1642270176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-f396181993be37c4cd5a0c6afca9ec337f2d5fab05bce15b64eaf36398e11ac43</originalsourceid><addsrcrecordid>eNqNkE1PwzAMhiMEEmPwH3LcpSVpsna9MU18aogDcI48x9Uy-rElKdL-Pa3GjQsn67VfvbYfxmZSpFLI_HaXut2WIDYQQvTQhop8mgmpU1GkQoszNpGLokwyuSjP2UQIWSSlkuKSXYWwG6XQ-YQ1S950NWFfg-f22ELjMPAQe3vkXcvHDRy71vYY3aBxCx4wknchjkbXBmeJxy1xqL-gpbh1XQ2R-PvylUNrf9u8dofe2Wt2UUEd6Oa3Ttnnw_3H6ilZvz0-r5brBLWWMalUmcuFLEu1IVWgRjsHgTlUCCWhUkWV2XkFGzHfIMn5JtcElcpVuSApAbWastkpd--7Q08hmsYFpLoeTun6YGSus6wYGOSD9e5kRd-F4Kkye-8a8EcjhRlJm535S9qMpI0ozEB6iHg5RdDw0rcbpgEdtUjWecJobOf-H_YDpTyW1A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642270176</pqid></control><display><type>article</type><title>A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid</title><source>Elsevier ScienceDirect Journals</source><creator>Kikugawa, Gota ; Ohara, Taku ; Kawaguchi, Tohru ; Kinefuchi, Ikuya ; Matsumoto, Yoichiro</creator><creatorcontrib>Kikugawa, Gota ; Ohara, Taku ; Kawaguchi, Tohru ; Kinefuchi, Ikuya ; Matsumoto, Yoichiro</creatorcontrib><description>In the present study, we performed molecular dynamics (MD) simulations of the self-assembled monolayer (SAM) and alkane solvent interface. In particular, 1-dodecanethiol (C12H25S) SAM chemisorbed on a gold substrate contacting with n-dodecane (C12H26) solvent was examined to compare the heat transfer mechanisms inside both the SAM and solvent phases from a microscopic viewpoint. The nonequilibrium MD (NEMD) simulation, in which a constant heat flux across the SAM interface was imposed, was performed. Here, we introduced the novel approach to clarify the molecular-scale mechanism on heat conduction in both SAM and alkane solvent. This approach enables us to decompose the macroscopic heat flux into the microscopic “building blocks”, i.e., the contribution of energy transfer associated with molecular motion and those of energy exchange by intermolecular (nonbonded) and intramolecular (covalent bond) interactions. Interestingly, we have obviously demonstrated that inside the SAM layer, almost all of the energy is transferred by the intramolecular interaction along the alkyl chain. On the other hand, inside the alkane liquid, the intramolecular and intermolecular interactions have similar contributions to the total heat flux in spite of the same molecular structure and alkyl chain length as the SAM molecules. This striking difference in heat conduction mechanism originates from the ordering structure of alkyl chains in the SAM layer.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2014.07.040</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Alkanes ; Chains ; Conduction ; Heat conduction ; Heat transfer ; Molecular dynamics ; Molecular dynamics simulation ; Molecular structure ; Self-assembled monolayer ; Solid–liquid interface ; Solvents</subject><ispartof>International journal of heat and mass transfer, 2014-11, Vol.78, p.630-635</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-f396181993be37c4cd5a0c6afca9ec337f2d5fab05bce15b64eaf36398e11ac43</citedby><cites>FETCH-LOGICAL-c441t-f396181993be37c4cd5a0c6afca9ec337f2d5fab05bce15b64eaf36398e11ac43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0017931014006292$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Kikugawa, Gota</creatorcontrib><creatorcontrib>Ohara, Taku</creatorcontrib><creatorcontrib>Kawaguchi, Tohru</creatorcontrib><creatorcontrib>Kinefuchi, Ikuya</creatorcontrib><creatorcontrib>Matsumoto, Yoichiro</creatorcontrib><title>A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid</title><title>International journal of heat and mass transfer</title><description>In the present study, we performed molecular dynamics (MD) simulations of the self-assembled monolayer (SAM) and alkane solvent interface. In particular, 1-dodecanethiol (C12H25S) SAM chemisorbed on a gold substrate contacting with n-dodecane (C12H26) solvent was examined to compare the heat transfer mechanisms inside both the SAM and solvent phases from a microscopic viewpoint. The nonequilibrium MD (NEMD) simulation, in which a constant heat flux across the SAM interface was imposed, was performed. Here, we introduced the novel approach to clarify the molecular-scale mechanism on heat conduction in both SAM and alkane solvent. This approach enables us to decompose the macroscopic heat flux into the microscopic “building blocks”, i.e., the contribution of energy transfer associated with molecular motion and those of energy exchange by intermolecular (nonbonded) and intramolecular (covalent bond) interactions. Interestingly, we have obviously demonstrated that inside the SAM layer, almost all of the energy is transferred by the intramolecular interaction along the alkyl chain. On the other hand, inside the alkane liquid, the intramolecular and intermolecular interactions have similar contributions to the total heat flux in spite of the same molecular structure and alkyl chain length as the SAM molecules. This striking difference in heat conduction mechanism originates from the ordering structure of alkyl chains in the SAM layer.</description><subject>Alkanes</subject><subject>Chains</subject><subject>Conduction</subject><subject>Heat conduction</subject><subject>Heat transfer</subject><subject>Molecular dynamics</subject><subject>Molecular dynamics simulation</subject><subject>Molecular structure</subject><subject>Self-assembled monolayer</subject><subject>Solid–liquid interface</subject><subject>Solvents</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwzAMhiMEEmPwH3LcpSVpsna9MU18aogDcI48x9Uy-rElKdL-Pa3GjQsn67VfvbYfxmZSpFLI_HaXut2WIDYQQvTQhop8mgmpU1GkQoszNpGLokwyuSjP2UQIWSSlkuKSXYWwG6XQ-YQ1S950NWFfg-f22ELjMPAQe3vkXcvHDRy71vYY3aBxCx4wknchjkbXBmeJxy1xqL-gpbh1XQ2R-PvylUNrf9u8dofe2Wt2UUEd6Oa3Ttnnw_3H6ilZvz0-r5brBLWWMalUmcuFLEu1IVWgRjsHgTlUCCWhUkWV2XkFGzHfIMn5JtcElcpVuSApAbWastkpd--7Q08hmsYFpLoeTun6YGSus6wYGOSD9e5kRd-F4Kkye-8a8EcjhRlJm535S9qMpI0ozEB6iHg5RdDw0rcbpgEdtUjWecJobOf-H_YDpTyW1A</recordid><startdate>20141101</startdate><enddate>20141101</enddate><creator>Kikugawa, Gota</creator><creator>Ohara, Taku</creator><creator>Kawaguchi, Tohru</creator><creator>Kinefuchi, Ikuya</creator><creator>Matsumoto, Yoichiro</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20141101</creationdate><title>A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid</title><author>Kikugawa, Gota ; Ohara, Taku ; Kawaguchi, Tohru ; Kinefuchi, Ikuya ; Matsumoto, Yoichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-f396181993be37c4cd5a0c6afca9ec337f2d5fab05bce15b64eaf36398e11ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Alkanes</topic><topic>Chains</topic><topic>Conduction</topic><topic>Heat conduction</topic><topic>Heat transfer</topic><topic>Molecular dynamics</topic><topic>Molecular dynamics simulation</topic><topic>Molecular structure</topic><topic>Self-assembled monolayer</topic><topic>Solid–liquid interface</topic><topic>Solvents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kikugawa, Gota</creatorcontrib><creatorcontrib>Ohara, Taku</creatorcontrib><creatorcontrib>Kawaguchi, Tohru</creatorcontrib><creatorcontrib>Kinefuchi, Ikuya</creatorcontrib><creatorcontrib>Matsumoto, Yoichiro</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kikugawa, Gota</au><au>Ohara, Taku</au><au>Kawaguchi, Tohru</au><au>Kinefuchi, Ikuya</au><au>Matsumoto, Yoichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2014-11-01</date><risdate>2014</risdate><volume>78</volume><spage>630</spage><epage>635</epage><pages>630-635</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>In the present study, we performed molecular dynamics (MD) simulations of the self-assembled monolayer (SAM) and alkane solvent interface. In particular, 1-dodecanethiol (C12H25S) SAM chemisorbed on a gold substrate contacting with n-dodecane (C12H26) solvent was examined to compare the heat transfer mechanisms inside both the SAM and solvent phases from a microscopic viewpoint. The nonequilibrium MD (NEMD) simulation, in which a constant heat flux across the SAM interface was imposed, was performed. Here, we introduced the novel approach to clarify the molecular-scale mechanism on heat conduction in both SAM and alkane solvent. This approach enables us to decompose the macroscopic heat flux into the microscopic “building blocks”, i.e., the contribution of energy transfer associated with molecular motion and those of energy exchange by intermolecular (nonbonded) and intramolecular (covalent bond) interactions. Interestingly, we have obviously demonstrated that inside the SAM layer, almost all of the energy is transferred by the intramolecular interaction along the alkyl chain. On the other hand, inside the alkane liquid, the intramolecular and intermolecular interactions have similar contributions to the total heat flux in spite of the same molecular structure and alkyl chain length as the SAM molecules. This striking difference in heat conduction mechanism originates from the ordering structure of alkyl chains in the SAM layer.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2014.07.040</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2014-11, Vol.78, p.630-635
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1642270176
source Elsevier ScienceDirect Journals
subjects Alkanes
Chains
Conduction
Heat conduction
Heat transfer
Molecular dynamics
Molecular dynamics simulation
Molecular structure
Self-assembled monolayer
Solid–liquid interface
Solvents
title A molecular dynamics study on heat conduction characteristics inside the alkanethiolate SAM and alkane liquid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T09%3A27%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20molecular%20dynamics%20study%20on%20heat%20conduction%20characteristics%20inside%20the%20alkanethiolate%20SAM%20and%20alkane%20liquid&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Kikugawa,%20Gota&rft.date=2014-11-01&rft.volume=78&rft.spage=630&rft.epage=635&rft.pages=630-635&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2014.07.040&rft_dat=%3Cproquest_cross%3E1642270176%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642270176&rft_id=info:pmid/&rft_els_id=S0017931014006292&rfr_iscdi=true