Risk averse optimal operation of a virtual power plant using two stage stochastic programming

VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2014-08, Vol.73, p.958-967
Hauptverfasser: Tajeddini, Mohammad Amin, Rahimi-Kian, Ashkan, Soroudi, Alireza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue
container_start_page 958
container_title Energy (Oxford)
container_volume 73
creator Tajeddini, Mohammad Amin
Rahimi-Kian, Ashkan
Soroudi, Alireza
description VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. •Virtual power plant modelling considering a set of energy generating and conversion units.•Uncertainty modelling using two stage stochastic programming technique.•Risk modelling using conditional value at risk.•Flexible operation of renewable energy resources.•Electricity price uncertainty in day ahead energy markets.
doi_str_mv 10.1016/j.energy.2014.06.110
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642268015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544214008093</els_id><sourcerecordid>1642268015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-4c5985408cfa073f091ab02a14dd4556f786834b944b21fcd34f6075d19894813</originalsourceid><addsrcrecordid>eNqNkMFqGzEQhnVIoamTN-hBl0Iv3o60kla6FEpo00IgUJpjEbJ25Mhdr7aS7JC3r4xDj6WXGRi-mX_4CHnLoGPA1IddhzPm7XPHgYkOVMcYXJBL6BWspRD8NXlTyg4ApDbmkvz8Hssv6o6YC9K01Lh3U-uYXY1ppilQR48x10MbL-kJM10mN1d6KHHe0vqUaKlui60m_-hKjZ4uOW2z2-8bcEVeBTcVvH7pK_Lw5fOPm6_ru_vbbzef7tZeMlHXwkujpQDtg4OhD2CY2wB3TIyjkFKFQSvdi40RYsNZ8GMvgoJBjsxoIzTrV-T9-W7L_n3AUu0-Fo9TexXToVimBOdKA5P_gXIujekH01BxRn1OpWQMdsnNT362DOxJtt3Zs2x7km1B2Sa7rb17SXDFuylkN_tY_u5yPTA4JazIxzOHzcwxYrbFR5w9jjGjr3ZM8d9BfwBOvpjn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1622599379</pqid></control><display><type>article</type><title>Risk averse optimal operation of a virtual power plant using two stage stochastic programming</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Tajeddini, Mohammad Amin ; Rahimi-Kian, Ashkan ; Soroudi, Alireza</creator><creatorcontrib>Tajeddini, Mohammad Amin ; Rahimi-Kian, Ashkan ; Soroudi, Alireza</creatorcontrib><description>VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. •Virtual power plant modelling considering a set of energy generating and conversion units.•Uncertainty modelling using two stage stochastic programming technique.•Risk modelling using conditional value at risk.•Flexible operation of renewable energy resources.•Electricity price uncertainty in day ahead energy markets.</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2014.06.110</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; CVaR ; Electric power generation ; Electric power plants ; Energy ; Exact sciences and technology ; Markets ; Mathematical models ; Mixed integer ; Optimization ; Risk ; Scenario based modelling ; Stochasticity ; Two-stage stochastic programming ; Uncertainty ; VPP</subject><ispartof>Energy (Oxford), 2014-08, Vol.73, p.958-967</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-4c5985408cfa073f091ab02a14dd4556f786834b944b21fcd34f6075d19894813</citedby><cites>FETCH-LOGICAL-c514t-4c5985408cfa073f091ab02a14dd4556f786834b944b21fcd34f6075d19894813</cites><orcidid>0000-0002-3651-6290</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2014.06.110$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28710599$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tajeddini, Mohammad Amin</creatorcontrib><creatorcontrib>Rahimi-Kian, Ashkan</creatorcontrib><creatorcontrib>Soroudi, Alireza</creatorcontrib><title>Risk averse optimal operation of a virtual power plant using two stage stochastic programming</title><title>Energy (Oxford)</title><description>VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. •Virtual power plant modelling considering a set of energy generating and conversion units.•Uncertainty modelling using two stage stochastic programming technique.•Risk modelling using conditional value at risk.•Flexible operation of renewable energy resources.•Electricity price uncertainty in day ahead energy markets.</description><subject>Applied sciences</subject><subject>CVaR</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Markets</subject><subject>Mathematical models</subject><subject>Mixed integer</subject><subject>Optimization</subject><subject>Risk</subject><subject>Scenario based modelling</subject><subject>Stochasticity</subject><subject>Two-stage stochastic programming</subject><subject>Uncertainty</subject><subject>VPP</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkMFqGzEQhnVIoamTN-hBl0Iv3o60kla6FEpo00IgUJpjEbJ25Mhdr7aS7JC3r4xDj6WXGRi-mX_4CHnLoGPA1IddhzPm7XPHgYkOVMcYXJBL6BWspRD8NXlTyg4ApDbmkvz8Hssv6o6YC9K01Lh3U-uYXY1ppilQR48x10MbL-kJM10mN1d6KHHe0vqUaKlui60m_-hKjZ4uOW2z2-8bcEVeBTcVvH7pK_Lw5fOPm6_ru_vbbzef7tZeMlHXwkujpQDtg4OhD2CY2wB3TIyjkFKFQSvdi40RYsNZ8GMvgoJBjsxoIzTrV-T9-W7L_n3AUu0-Fo9TexXToVimBOdKA5P_gXIujekH01BxRn1OpWQMdsnNT362DOxJtt3Zs2x7km1B2Sa7rb17SXDFuylkN_tY_u5yPTA4JazIxzOHzcwxYrbFR5w9jjGjr3ZM8d9BfwBOvpjn</recordid><startdate>20140814</startdate><enddate>20140814</enddate><creator>Tajeddini, Mohammad Amin</creator><creator>Rahimi-Kian, Ashkan</creator><creator>Soroudi, Alireza</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U1</scope><scope>7U2</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3651-6290</orcidid></search><sort><creationdate>20140814</creationdate><title>Risk averse optimal operation of a virtual power plant using two stage stochastic programming</title><author>Tajeddini, Mohammad Amin ; Rahimi-Kian, Ashkan ; Soroudi, Alireza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-4c5985408cfa073f091ab02a14dd4556f786834b944b21fcd34f6075d19894813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>CVaR</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Markets</topic><topic>Mathematical models</topic><topic>Mixed integer</topic><topic>Optimization</topic><topic>Risk</topic><topic>Scenario based modelling</topic><topic>Stochasticity</topic><topic>Two-stage stochastic programming</topic><topic>Uncertainty</topic><topic>VPP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tajeddini, Mohammad Amin</creatorcontrib><creatorcontrib>Rahimi-Kian, Ashkan</creatorcontrib><creatorcontrib>Soroudi, Alireza</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tajeddini, Mohammad Amin</au><au>Rahimi-Kian, Ashkan</au><au>Soroudi, Alireza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Risk averse optimal operation of a virtual power plant using two stage stochastic programming</atitle><jtitle>Energy (Oxford)</jtitle><date>2014-08-14</date><risdate>2014</risdate><volume>73</volume><spage>958</spage><epage>967</epage><pages>958-967</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>VPP (Virtual Power Plant) is defined as a cluster of energy conversion/storage units which are centrally operated in order to improve the technical and economic performance. This paper addresses the optimal operation of a VPP considering the risk factors affecting its daily operation profits. The optimal operation is modelled in both day ahead and balancing markets as a two-stage stochastic mixed integer linear programming in order to maximize a GenCo (generation companies) expected profit. Furthermore, the CVaR (Conditional Value at Risk) is used as a risk measure technique in order to control the risk of low profit scenarios. The uncertain parameters, including the PV power output, wind power output and day-ahead market prices are modelled through scenarios. The proposed model is successfully applied to a real case study to show its applicability and the results are presented and thoroughly discussed. •Virtual power plant modelling considering a set of energy generating and conversion units.•Uncertainty modelling using two stage stochastic programming technique.•Risk modelling using conditional value at risk.•Flexible operation of renewable energy resources.•Electricity price uncertainty in day ahead energy markets.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2014.06.110</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3651-6290</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2014-08, Vol.73, p.958-967
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_1642268015
source Elsevier ScienceDirect Journals Complete
subjects Applied sciences
CVaR
Electric power generation
Electric power plants
Energy
Exact sciences and technology
Markets
Mathematical models
Mixed integer
Optimization
Risk
Scenario based modelling
Stochasticity
Two-stage stochastic programming
Uncertainty
VPP
title Risk averse optimal operation of a virtual power plant using two stage stochastic programming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Risk%20averse%20optimal%20operation%20of%20a%20virtual%20power%20plant%20using%20two%20stage%20stochastic%20programming&rft.jtitle=Energy%20(Oxford)&rft.au=Tajeddini,%20Mohammad%20Amin&rft.date=2014-08-14&rft.volume=73&rft.spage=958&rft.epage=967&rft.pages=958-967&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2014.06.110&rft_dat=%3Cproquest_cross%3E1642268015%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1622599379&rft_id=info:pmid/&rft_els_id=S0360544214008093&rfr_iscdi=true