Integration of biohydrogen, biomethane and bioelectrochemical systems

Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conv...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Renewable energy 2013-01, Vol.49, p.188-192
Hauptverfasser: Premier, G.C., Kim, J.R., Massanet-Nicolau, J., Kyazze, G., Esteves, S.R.R., Penumathsa, B.K.V., Rodríguez, J., Maddy, J., Dinsdale, R.M., Guwy, A.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue
container_start_page 188
container_title Renewable energy
container_volume 49
creator Premier, G.C.
Kim, J.R.
Massanet-Nicolau, J.
Kyazze, G.
Esteves, S.R.R.
Penumathsa, B.K.V.
Rodríguez, J.
Maddy, J.
Dinsdale, R.M.
Guwy, A.J.
description Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.
doi_str_mv 10.1016/j.renene.2012.01.035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642267818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148112000468</els_id><sourcerecordid>1500800812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVoods0_6CQvQRyqN0ZWbLlS6GEfEEghyZnoZVHu1psK5GcwP77yjjkmDCCYeCZ0cvD2E-EEgHr3_sy0pir5IC8BCyhkkdshappC6gV_8JW0NZQoFD4jX1PaQ-AUjVixS5vx4m20Uw-jOvg1hsfdocuhi2Nv-ZhoGlnRlqbsZtH6slOMdgdDd6afp0OaaIh_WBfnekTnbz1Y_Z4dflwcVPc3V_fXvy9K6zg9VRQgwq4kQ6E5a1tEDdWOFdBRZXkUkjqVAW4qTZY8064FriyoFAaLgQJqo7Z-XL3KYbnF0qTHnyy1Pc5YnhJGmvBed0oVJ-jEkDlhzyjYkFtDClFcvop-sHEg0bQs2C914tgPQvWgDoLzmtnbz-YlF24aEbr0_sur6USbTNzpwvnTNBmGzPz-C8fygGwAYFNJv4sBGV3r56iTtbTaKnzMfvWXfAfR_kPRo-a2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500800812</pqid></control><display><type>article</type><title>Integration of biohydrogen, biomethane and bioelectrochemical systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Premier, G.C. ; Kim, J.R. ; Massanet-Nicolau, J. ; Kyazze, G. ; Esteves, S.R.R. ; Penumathsa, B.K.V. ; Rodríguez, J. ; Maddy, J. ; Dinsdale, R.M. ; Guwy, A.J.</creator><creatorcontrib>Premier, G.C. ; Kim, J.R. ; Massanet-Nicolau, J. ; Kyazze, G. ; Esteves, S.R.R. ; Penumathsa, B.K.V. ; Rodríguez, J. ; Maddy, J. ; Dinsdale, R.M. ; Guwy, A.J.</creatorcontrib><description>Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2012.01.035</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>agricultural wastes ; Anaerobic bioprocesses ; Anaerobic digestion ; Applied sciences ; Bacteria ; BES ; bioelectrochemistry ; biogas ; Biohydrogen ; Biomass ; Conversion ; digestion ; Direct energy conversion and energy accumulation ; Direct power generation ; Effluents ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; electricity ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; energy crops ; energy efficiency ; Energy management ; energy recovery ; Energy. Thermal use of fuels ; environmental impact ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; feedstocks ; Fuel cells ; Methane ; methane production ; methanogens ; Microbial fuel cells ; Multi-stage ; pretreatment ; volatile fatty acids ; wastewater</subject><ispartof>Renewable energy, 2013-01, Vol.49, p.188-192</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</citedby><cites>FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148112000468$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26584975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Premier, G.C.</creatorcontrib><creatorcontrib>Kim, J.R.</creatorcontrib><creatorcontrib>Massanet-Nicolau, J.</creatorcontrib><creatorcontrib>Kyazze, G.</creatorcontrib><creatorcontrib>Esteves, S.R.R.</creatorcontrib><creatorcontrib>Penumathsa, B.K.V.</creatorcontrib><creatorcontrib>Rodríguez, J.</creatorcontrib><creatorcontrib>Maddy, J.</creatorcontrib><creatorcontrib>Dinsdale, R.M.</creatorcontrib><creatorcontrib>Guwy, A.J.</creatorcontrib><title>Integration of biohydrogen, biomethane and bioelectrochemical systems</title><title>Renewable energy</title><description>Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.</description><subject>agricultural wastes</subject><subject>Anaerobic bioprocesses</subject><subject>Anaerobic digestion</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>BES</subject><subject>bioelectrochemistry</subject><subject>biogas</subject><subject>Biohydrogen</subject><subject>Biomass</subject><subject>Conversion</subject><subject>digestion</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Direct power generation</subject><subject>Effluents</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>electricity</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>energy crops</subject><subject>energy efficiency</subject><subject>Energy management</subject><subject>energy recovery</subject><subject>Energy. Thermal use of fuels</subject><subject>environmental impact</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>feedstocks</subject><subject>Fuel cells</subject><subject>Methane</subject><subject>methane production</subject><subject>methanogens</subject><subject>Microbial fuel cells</subject><subject>Multi-stage</subject><subject>pretreatment</subject><subject>volatile fatty acids</subject><subject>wastewater</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVoods0_6CQvQRyqN0ZWbLlS6GEfEEghyZnoZVHu1psK5GcwP77yjjkmDCCYeCZ0cvD2E-EEgHr3_sy0pir5IC8BCyhkkdshappC6gV_8JW0NZQoFD4jX1PaQ-AUjVixS5vx4m20Uw-jOvg1hsfdocuhi2Nv-ZhoGlnRlqbsZtH6slOMdgdDd6afp0OaaIh_WBfnekTnbz1Y_Z4dflwcVPc3V_fXvy9K6zg9VRQgwq4kQ6E5a1tEDdWOFdBRZXkUkjqVAW4qTZY8064FriyoFAaLgQJqo7Z-XL3KYbnF0qTHnyy1Pc5YnhJGmvBed0oVJ-jEkDlhzyjYkFtDClFcvop-sHEg0bQs2C914tgPQvWgDoLzmtnbz-YlF24aEbr0_sur6USbTNzpwvnTNBmGzPz-C8fygGwAYFNJv4sBGV3r56iTtbTaKnzMfvWXfAfR_kPRo-a2w</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Premier, G.C.</creator><creator>Kim, J.R.</creator><creator>Massanet-Nicolau, J.</creator><creator>Kyazze, G.</creator><creator>Esteves, S.R.R.</creator><creator>Penumathsa, B.K.V.</creator><creator>Rodríguez, J.</creator><creator>Maddy, J.</creator><creator>Dinsdale, R.M.</creator><creator>Guwy, A.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Integration of biohydrogen, biomethane and bioelectrochemical systems</title><author>Premier, G.C. ; Kim, J.R. ; Massanet-Nicolau, J. ; Kyazze, G. ; Esteves, S.R.R. ; Penumathsa, B.K.V. ; Rodríguez, J. ; Maddy, J. ; Dinsdale, R.M. ; Guwy, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>agricultural wastes</topic><topic>Anaerobic bioprocesses</topic><topic>Anaerobic digestion</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>BES</topic><topic>bioelectrochemistry</topic><topic>biogas</topic><topic>Biohydrogen</topic><topic>Biomass</topic><topic>Conversion</topic><topic>digestion</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Direct power generation</topic><topic>Effluents</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>electricity</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>energy crops</topic><topic>energy efficiency</topic><topic>Energy management</topic><topic>energy recovery</topic><topic>Energy. Thermal use of fuels</topic><topic>environmental impact</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>feedstocks</topic><topic>Fuel cells</topic><topic>Methane</topic><topic>methane production</topic><topic>methanogens</topic><topic>Microbial fuel cells</topic><topic>Multi-stage</topic><topic>pretreatment</topic><topic>volatile fatty acids</topic><topic>wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Premier, G.C.</creatorcontrib><creatorcontrib>Kim, J.R.</creatorcontrib><creatorcontrib>Massanet-Nicolau, J.</creatorcontrib><creatorcontrib>Kyazze, G.</creatorcontrib><creatorcontrib>Esteves, S.R.R.</creatorcontrib><creatorcontrib>Penumathsa, B.K.V.</creatorcontrib><creatorcontrib>Rodríguez, J.</creatorcontrib><creatorcontrib>Maddy, J.</creatorcontrib><creatorcontrib>Dinsdale, R.M.</creatorcontrib><creatorcontrib>Guwy, A.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Premier, G.C.</au><au>Kim, J.R.</au><au>Massanet-Nicolau, J.</au><au>Kyazze, G.</au><au>Esteves, S.R.R.</au><au>Penumathsa, B.K.V.</au><au>Rodríguez, J.</au><au>Maddy, J.</au><au>Dinsdale, R.M.</au><au>Guwy, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of biohydrogen, biomethane and bioelectrochemical systems</atitle><jtitle>Renewable energy</jtitle><date>2013-01</date><risdate>2013</risdate><volume>49</volume><spage>188</spage><epage>192</epage><pages>188-192</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2012.01.035</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-1481
ispartof Renewable energy, 2013-01, Vol.49, p.188-192
issn 0960-1481
1879-0682
language eng
recordid cdi_proquest_miscellaneous_1642267818
source Elsevier ScienceDirect Journals Complete
subjects agricultural wastes
Anaerobic bioprocesses
Anaerobic digestion
Applied sciences
Bacteria
BES
bioelectrochemistry
biogas
Biohydrogen
Biomass
Conversion
digestion
Direct energy conversion and energy accumulation
Direct power generation
Effluents
Electrical engineering. Electrical power engineering
Electrical power engineering
electricity
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
energy crops
energy efficiency
Energy management
energy recovery
Energy. Thermal use of fuels
environmental impact
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
feedstocks
Fuel cells
Methane
methane production
methanogens
Microbial fuel cells
Multi-stage
pretreatment
volatile fatty acids
wastewater
title Integration of biohydrogen, biomethane and bioelectrochemical systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20biohydrogen,%20biomethane%20and%20bioelectrochemical%20systems&rft.jtitle=Renewable%20energy&rft.au=Premier,%20G.C.&rft.date=2013-01&rft.volume=49&rft.spage=188&rft.epage=192&rft.pages=188-192&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2012.01.035&rft_dat=%3Cproquest_cross%3E1500800812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500800812&rft_id=info:pmid/&rft_els_id=S0960148112000468&rfr_iscdi=true