Integration of biohydrogen, biomethane and bioelectrochemical systems
Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conv...
Gespeichert in:
Veröffentlicht in: | Renewable energy 2013-01, Vol.49, p.188-192 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | |
container_start_page | 188 |
container_title | Renewable energy |
container_volume | 49 |
creator | Premier, G.C. Kim, J.R. Massanet-Nicolau, J. Kyazze, G. Esteves, S.R.R. Penumathsa, B.K.V. Rodríguez, J. Maddy, J. Dinsdale, R.M. Guwy, A.J. |
description | Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy. |
doi_str_mv | 10.1016/j.renene.2012.01.035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642267818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960148112000468</els_id><sourcerecordid>1500800812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVoods0_6CQvQRyqN0ZWbLlS6GEfEEghyZnoZVHu1psK5GcwP77yjjkmDCCYeCZ0cvD2E-EEgHr3_sy0pir5IC8BCyhkkdshappC6gV_8JW0NZQoFD4jX1PaQ-AUjVixS5vx4m20Uw-jOvg1hsfdocuhi2Nv-ZhoGlnRlqbsZtH6slOMdgdDd6afp0OaaIh_WBfnekTnbz1Y_Z4dflwcVPc3V_fXvy9K6zg9VRQgwq4kQ6E5a1tEDdWOFdBRZXkUkjqVAW4qTZY8064FriyoFAaLgQJqo7Z-XL3KYbnF0qTHnyy1Pc5YnhJGmvBed0oVJ-jEkDlhzyjYkFtDClFcvop-sHEg0bQs2C914tgPQvWgDoLzmtnbz-YlF24aEbr0_sur6USbTNzpwvnTNBmGzPz-C8fygGwAYFNJv4sBGV3r56iTtbTaKnzMfvWXfAfR_kPRo-a2w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500800812</pqid></control><display><type>article</type><title>Integration of biohydrogen, biomethane and bioelectrochemical systems</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Premier, G.C. ; Kim, J.R. ; Massanet-Nicolau, J. ; Kyazze, G. ; Esteves, S.R.R. ; Penumathsa, B.K.V. ; Rodríguez, J. ; Maddy, J. ; Dinsdale, R.M. ; Guwy, A.J.</creator><creatorcontrib>Premier, G.C. ; Kim, J.R. ; Massanet-Nicolau, J. ; Kyazze, G. ; Esteves, S.R.R. ; Penumathsa, B.K.V. ; Rodríguez, J. ; Maddy, J. ; Dinsdale, R.M. ; Guwy, A.J.</creatorcontrib><description>Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.</description><identifier>ISSN: 0960-1481</identifier><identifier>EISSN: 1879-0682</identifier><identifier>DOI: 10.1016/j.renene.2012.01.035</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>agricultural wastes ; Anaerobic bioprocesses ; Anaerobic digestion ; Applied sciences ; Bacteria ; BES ; bioelectrochemistry ; biogas ; Biohydrogen ; Biomass ; Conversion ; digestion ; Direct energy conversion and energy accumulation ; Direct power generation ; Effluents ; Electrical engineering. Electrical power engineering ; Electrical power engineering ; electricity ; Electrochemical conversion: primary and secondary batteries, fuel cells ; Energy ; energy crops ; energy efficiency ; Energy management ; energy recovery ; Energy. Thermal use of fuels ; environmental impact ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; feedstocks ; Fuel cells ; Methane ; methane production ; methanogens ; Microbial fuel cells ; Multi-stage ; pretreatment ; volatile fatty acids ; wastewater</subject><ispartof>Renewable energy, 2013-01, Vol.49, p.188-192</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</citedby><cites>FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960148112000468$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,3537,4010,4036,4037,23909,23910,25118,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26584975$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Premier, G.C.</creatorcontrib><creatorcontrib>Kim, J.R.</creatorcontrib><creatorcontrib>Massanet-Nicolau, J.</creatorcontrib><creatorcontrib>Kyazze, G.</creatorcontrib><creatorcontrib>Esteves, S.R.R.</creatorcontrib><creatorcontrib>Penumathsa, B.K.V.</creatorcontrib><creatorcontrib>Rodríguez, J.</creatorcontrib><creatorcontrib>Maddy, J.</creatorcontrib><creatorcontrib>Dinsdale, R.M.</creatorcontrib><creatorcontrib>Guwy, A.J.</creatorcontrib><title>Integration of biohydrogen, biomethane and bioelectrochemical systems</title><title>Renewable energy</title><description>Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.</description><subject>agricultural wastes</subject><subject>Anaerobic bioprocesses</subject><subject>Anaerobic digestion</subject><subject>Applied sciences</subject><subject>Bacteria</subject><subject>BES</subject><subject>bioelectrochemistry</subject><subject>biogas</subject><subject>Biohydrogen</subject><subject>Biomass</subject><subject>Conversion</subject><subject>digestion</subject><subject>Direct energy conversion and energy accumulation</subject><subject>Direct power generation</subject><subject>Effluents</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrical power engineering</subject><subject>electricity</subject><subject>Electrochemical conversion: primary and secondary batteries, fuel cells</subject><subject>Energy</subject><subject>energy crops</subject><subject>energy efficiency</subject><subject>Energy management</subject><subject>energy recovery</subject><subject>Energy. Thermal use of fuels</subject><subject>environmental impact</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>feedstocks</subject><subject>Fuel cells</subject><subject>Methane</subject><subject>methane production</subject><subject>methanogens</subject><subject>Microbial fuel cells</subject><subject>Multi-stage</subject><subject>pretreatment</subject><subject>volatile fatty acids</subject><subject>wastewater</subject><issn>0960-1481</issn><issn>1879-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVoods0_6CQvQRyqN0ZWbLlS6GEfEEghyZnoZVHu1psK5GcwP77yjjkmDCCYeCZ0cvD2E-EEgHr3_sy0pir5IC8BCyhkkdshappC6gV_8JW0NZQoFD4jX1PaQ-AUjVixS5vx4m20Uw-jOvg1hsfdocuhi2Nv-ZhoGlnRlqbsZtH6slOMdgdDd6afp0OaaIh_WBfnekTnbz1Y_Z4dflwcVPc3V_fXvy9K6zg9VRQgwq4kQ6E5a1tEDdWOFdBRZXkUkjqVAW4qTZY8064FriyoFAaLgQJqo7Z-XL3KYbnF0qTHnyy1Pc5YnhJGmvBed0oVJ-jEkDlhzyjYkFtDClFcvop-sHEg0bQs2C914tgPQvWgDoLzmtnbz-YlF24aEbr0_sur6USbTNzpwvnTNBmGzPz-C8fygGwAYFNJv4sBGV3r56iTtbTaKnzMfvWXfAfR_kPRo-a2w</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Premier, G.C.</creator><creator>Kim, J.R.</creator><creator>Massanet-Nicolau, J.</creator><creator>Kyazze, G.</creator><creator>Esteves, S.R.R.</creator><creator>Penumathsa, B.K.V.</creator><creator>Rodríguez, J.</creator><creator>Maddy, J.</creator><creator>Dinsdale, R.M.</creator><creator>Guwy, A.J.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201301</creationdate><title>Integration of biohydrogen, biomethane and bioelectrochemical systems</title><author>Premier, G.C. ; Kim, J.R. ; Massanet-Nicolau, J. ; Kyazze, G. ; Esteves, S.R.R. ; Penumathsa, B.K.V. ; Rodríguez, J. ; Maddy, J. ; Dinsdale, R.M. ; Guwy, A.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-e71802a5f04c29c711bc4ff303e352545ed8301b3b162d4f9028c0815a244e4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>agricultural wastes</topic><topic>Anaerobic bioprocesses</topic><topic>Anaerobic digestion</topic><topic>Applied sciences</topic><topic>Bacteria</topic><topic>BES</topic><topic>bioelectrochemistry</topic><topic>biogas</topic><topic>Biohydrogen</topic><topic>Biomass</topic><topic>Conversion</topic><topic>digestion</topic><topic>Direct energy conversion and energy accumulation</topic><topic>Direct power generation</topic><topic>Effluents</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrical power engineering</topic><topic>electricity</topic><topic>Electrochemical conversion: primary and secondary batteries, fuel cells</topic><topic>Energy</topic><topic>energy crops</topic><topic>energy efficiency</topic><topic>Energy management</topic><topic>energy recovery</topic><topic>Energy. Thermal use of fuels</topic><topic>environmental impact</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>feedstocks</topic><topic>Fuel cells</topic><topic>Methane</topic><topic>methane production</topic><topic>methanogens</topic><topic>Microbial fuel cells</topic><topic>Multi-stage</topic><topic>pretreatment</topic><topic>volatile fatty acids</topic><topic>wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Premier, G.C.</creatorcontrib><creatorcontrib>Kim, J.R.</creatorcontrib><creatorcontrib>Massanet-Nicolau, J.</creatorcontrib><creatorcontrib>Kyazze, G.</creatorcontrib><creatorcontrib>Esteves, S.R.R.</creatorcontrib><creatorcontrib>Penumathsa, B.K.V.</creatorcontrib><creatorcontrib>Rodríguez, J.</creatorcontrib><creatorcontrib>Maddy, J.</creatorcontrib><creatorcontrib>Dinsdale, R.M.</creatorcontrib><creatorcontrib>Guwy, A.J.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Renewable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Premier, G.C.</au><au>Kim, J.R.</au><au>Massanet-Nicolau, J.</au><au>Kyazze, G.</au><au>Esteves, S.R.R.</au><au>Penumathsa, B.K.V.</au><au>Rodríguez, J.</au><au>Maddy, J.</au><au>Dinsdale, R.M.</au><au>Guwy, A.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of biohydrogen, biomethane and bioelectrochemical systems</atitle><jtitle>Renewable energy</jtitle><date>2013-01</date><risdate>2013</risdate><volume>49</volume><spage>188</spage><epage>192</epage><pages>188-192</pages><issn>0960-1481</issn><eissn>1879-0682</eissn><abstract>Anaerobic bioprocesses such as Anaerobic digestion (AD), fermentative biohydrogen (BioH2), and Bioelectrochemical system (BES), converting municipal, agro-industrial wastes and crops to energy have attracted accelerating interest. Anaerobic digestion (AD) however, still requires optimisation of conversion efficiency from biomass to methane. Augmenting methane energy production with simultaneous BioH2 and bioelectrochemical stage(s) would increase process efficiencies while meeting post treatment effluent quality. Pre-treatment of feedstock increase bacterial accessibility to biomass, thus increasing the conversion yield to target product, but an alternative is separating the acidogenic/hydrolytic processes of AD from methanogenesis. Acidogenesis can be combined with BioH2 production, prior to methanogenesis. Depending on operating conditions and without further treatment after digestion, the methanogenic stage may discharge a digestate with significant organic strength including volatile fatty acids (VFAs). To meet wastewater discharge consents; adequate use of digestates on land; to minimise environmental impact and; enhance recovery of energy, VFAs should be low. Concatenating bioelectrochemical systems (BES) producing hydrogen and/or electricity can facilitate effluent polishing and improved energy efficiency. Various configurations of the BioH2, methanogenesis and BES are plausible, and should improve the conversion of wet biomass to energy.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.renene.2012.01.035</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0960-1481 |
ispartof | Renewable energy, 2013-01, Vol.49, p.188-192 |
issn | 0960-1481 1879-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642267818 |
source | Elsevier ScienceDirect Journals Complete |
subjects | agricultural wastes Anaerobic bioprocesses Anaerobic digestion Applied sciences Bacteria BES bioelectrochemistry biogas Biohydrogen Biomass Conversion digestion Direct energy conversion and energy accumulation Direct power generation Effluents Electrical engineering. Electrical power engineering Electrical power engineering electricity Electrochemical conversion: primary and secondary batteries, fuel cells Energy energy crops energy efficiency Energy management energy recovery Energy. Thermal use of fuels environmental impact Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology feedstocks Fuel cells Methane methane production methanogens Microbial fuel cells Multi-stage pretreatment volatile fatty acids wastewater |
title | Integration of biohydrogen, biomethane and bioelectrochemical systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A33%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20biohydrogen,%20biomethane%20and%20bioelectrochemical%20systems&rft.jtitle=Renewable%20energy&rft.au=Premier,%20G.C.&rft.date=2013-01&rft.volume=49&rft.spage=188&rft.epage=192&rft.pages=188-192&rft.issn=0960-1481&rft.eissn=1879-0682&rft_id=info:doi/10.1016/j.renene.2012.01.035&rft_dat=%3Cproquest_cross%3E1500800812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500800812&rft_id=info:pmid/&rft_els_id=S0960148112000468&rfr_iscdi=true |