Jettable fluid space and jetting characteristics of a microprint head

The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2012-12, Vol.713, p.109-122
Hauptverfasser: Wong, Loke-Yuen, Lim, Guan-Hui, Ye, Thiha, Silva, F. B. Shanjeera, Zhuo, Jing-Mei, Png, Rui-Qi, Chua, Soo-Jin, Ho, Peter K. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 122
container_issue
container_start_page 109
container_title Journal of fluid mechanics
container_volume 713
creator Wong, Loke-Yuen
Lim, Guan-Hui
Ye, Thiha
Silva, F. B. Shanjeera
Zhuo, Jing-Mei
Png, Rui-Qi
Chua, Soo-Jin
Ho, Peter K. H.
description The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower $\mathit{Oh}$ limits, but these shift approximately linearly with the piezo pulse voltage amplitude ${V}_{o} $ , which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram. Satellite-free droplets of the model fluid can be jetted over a wide $\mathit{Oh}$ range, at least 0.025 to 0.5 (corresponding to $Z= {\mathit{Oh}}^{\ensuremath{-} 1} $ of 40 to 2), by adjusting ${V}_{o} $ appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be $20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $ under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with ${V}_{o} $ , with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about $2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $ . This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram.
doi_str_mv 10.1017/jfm.2012.440
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642267222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_440</cupid><sourcerecordid>1642267222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</originalsourceid><addsrcrecordid>eNqFkD1rHDEQhkVwwBfHnX-AIBhceC-akbS7Ko05OwmGNHG9jLSSrWM_LtJe4X9vHT5CCAFXKuaZZ_S-jF2AWIOA5us2jGsUgGulxAe2AlWbqqmVPmErIRArABSn7FPOWyFACtOs2OaHXxayg-dh2Mee5x05z2nq-bYM4vTE3TMlcotPMS_RZT4HTnyMLs27FKeFP3vqP7OPgYbsz4_vGXu82_y6_VY9_Lz_fnvzUDlp2qWioJzRymsLWkIvZat9SxJ1QCFrdKitsKEXTVAgrKI2eNMrb62URpGt5Rm7evPu0vx77_PSjTE7Pww0-XmfO6gVYt0g4vso1nUDqgVT0C__oNt5n6YSpFAIqIVpoVDXb1RJnnPyoSv5R0ovHYjuUH9X6u8O9Xel_oJfHqWUHQ0h0eRi_rNTfqmhMQdufdTSaFPsn_xf1_8nfgVnzpJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221250981</pqid></control><display><type>article</type><title>Jettable fluid space and jetting characteristics of a microprint head</title><source>Cambridge University Press Journals Complete</source><creator>Wong, Loke-Yuen ; Lim, Guan-Hui ; Ye, Thiha ; Silva, F. B. Shanjeera ; Zhuo, Jing-Mei ; Png, Rui-Qi ; Chua, Soo-Jin ; Ho, Peter K. H.</creator><creatorcontrib>Wong, Loke-Yuen ; Lim, Guan-Hui ; Ye, Thiha ; Silva, F. B. Shanjeera ; Zhuo, Jing-Mei ; Png, Rui-Qi ; Chua, Soo-Jin ; Ho, Peter K. H.</creatorcontrib><description>The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower $\mathit{Oh}$ limits, but these shift approximately linearly with the piezo pulse voltage amplitude ${V}_{o} $ , which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram. Satellite-free droplets of the model fluid can be jetted over a wide $\mathit{Oh}$ range, at least 0.025 to 0.5 (corresponding to $Z= {\mathit{Oh}}^{\ensuremath{-} 1} $ of 40 to 2), by adjusting ${V}_{o} $ appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be $20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $ under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with ${V}_{o} $ , with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about $2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $ . This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.440</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied sciences ; Boundaries ; Computational fluid dynamics ; Droplets ; Electric potential ; Electronics ; Exact sciences and technology ; Fluid flow ; Fluid mechanics ; Fluids ; Hardware ; Ink jet printing ; Input-output equipment ; Microelectronics ; Piezoelectric transducers ; Voltage</subject><ispartof>Journal of fluid mechanics, 2012-12, Vol.713, p.109-122</ispartof><rights>2012 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</citedby><cites>FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012004405/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26751790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Loke-Yuen</creatorcontrib><creatorcontrib>Lim, Guan-Hui</creatorcontrib><creatorcontrib>Ye, Thiha</creatorcontrib><creatorcontrib>Silva, F. B. Shanjeera</creatorcontrib><creatorcontrib>Zhuo, Jing-Mei</creatorcontrib><creatorcontrib>Png, Rui-Qi</creatorcontrib><creatorcontrib>Chua, Soo-Jin</creatorcontrib><creatorcontrib>Ho, Peter K. H.</creatorcontrib><title>Jettable fluid space and jetting characteristics of a microprint head</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower $\mathit{Oh}$ limits, but these shift approximately linearly with the piezo pulse voltage amplitude ${V}_{o} $ , which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram. Satellite-free droplets of the model fluid can be jetted over a wide $\mathit{Oh}$ range, at least 0.025 to 0.5 (corresponding to $Z= {\mathit{Oh}}^{\ensuremath{-} 1} $ of 40 to 2), by adjusting ${V}_{o} $ appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be $20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $ under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with ${V}_{o} $ , with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about $2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $ . This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Computational fluid dynamics</subject><subject>Droplets</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Hardware</subject><subject>Ink jet printing</subject><subject>Input-output equipment</subject><subject>Microelectronics</subject><subject>Piezoelectric transducers</subject><subject>Voltage</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkD1rHDEQhkVwwBfHnX-AIBhceC-akbS7Ko05OwmGNHG9jLSSrWM_LtJe4X9vHT5CCAFXKuaZZ_S-jF2AWIOA5us2jGsUgGulxAe2AlWbqqmVPmErIRArABSn7FPOWyFACtOs2OaHXxayg-dh2Mee5x05z2nq-bYM4vTE3TMlcotPMS_RZT4HTnyMLs27FKeFP3vqP7OPgYbsz4_vGXu82_y6_VY9_Lz_fnvzUDlp2qWioJzRymsLWkIvZat9SxJ1QCFrdKitsKEXTVAgrKI2eNMrb62URpGt5Rm7evPu0vx77_PSjTE7Pww0-XmfO6gVYt0g4vso1nUDqgVT0C__oNt5n6YSpFAIqIVpoVDXb1RJnnPyoSv5R0ovHYjuUH9X6u8O9Xel_oJfHqWUHQ0h0eRi_rNTfqmhMQdufdTSaFPsn_xf1_8nfgVnzpJI</recordid><startdate>20121225</startdate><enddate>20121225</enddate><creator>Wong, Loke-Yuen</creator><creator>Lim, Guan-Hui</creator><creator>Ye, Thiha</creator><creator>Silva, F. B. Shanjeera</creator><creator>Zhuo, Jing-Mei</creator><creator>Png, Rui-Qi</creator><creator>Chua, Soo-Jin</creator><creator>Ho, Peter K. H.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QH</scope></search><sort><creationdate>20121225</creationdate><title>Jettable fluid space and jetting characteristics of a microprint head</title><author>Wong, Loke-Yuen ; Lim, Guan-Hui ; Ye, Thiha ; Silva, F. B. Shanjeera ; Zhuo, Jing-Mei ; Png, Rui-Qi ; Chua, Soo-Jin ; Ho, Peter K. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Computational fluid dynamics</topic><topic>Droplets</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Hardware</topic><topic>Ink jet printing</topic><topic>Input-output equipment</topic><topic>Microelectronics</topic><topic>Piezoelectric transducers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Loke-Yuen</creatorcontrib><creatorcontrib>Lim, Guan-Hui</creatorcontrib><creatorcontrib>Ye, Thiha</creatorcontrib><creatorcontrib>Silva, F. B. Shanjeera</creatorcontrib><creatorcontrib>Zhuo, Jing-Mei</creatorcontrib><creatorcontrib>Png, Rui-Qi</creatorcontrib><creatorcontrib>Chua, Soo-Jin</creatorcontrib><creatorcontrib>Ho, Peter K. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Aqualine</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Loke-Yuen</au><au>Lim, Guan-Hui</au><au>Ye, Thiha</au><au>Silva, F. B. Shanjeera</au><au>Zhuo, Jing-Mei</au><au>Png, Rui-Qi</au><au>Chua, Soo-Jin</au><au>Ho, Peter K. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jettable fluid space and jetting characteristics of a microprint head</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-12-25</date><risdate>2012</risdate><volume>713</volume><spage>109</spage><epage>122</epage><pages>109-122</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower $\mathit{Oh}$ limits, but these shift approximately linearly with the piezo pulse voltage amplitude ${V}_{o} $ , which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram. Satellite-free droplets of the model fluid can be jetted over a wide $\mathit{Oh}$ range, at least 0.025 to 0.5 (corresponding to $Z= {\mathit{Oh}}^{\ensuremath{-} 1} $ of 40 to 2), by adjusting ${V}_{o} $ appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be $20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $ under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with ${V}_{o} $ , with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about $2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $ . This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the ${V}_{o} {{\ndash}}\mathit{Oh}$ diagram.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.440</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2012-12, Vol.713, p.109-122
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_miscellaneous_1642267222
source Cambridge University Press Journals Complete
subjects Applied sciences
Boundaries
Computational fluid dynamics
Droplets
Electric potential
Electronics
Exact sciences and technology
Fluid flow
Fluid mechanics
Fluids
Hardware
Ink jet printing
Input-output equipment
Microelectronics
Piezoelectric transducers
Voltage
title Jettable fluid space and jetting characteristics of a microprint head
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jettable%20fluid%20space%20and%20jetting%20characteristics%20of%20a%20microprint%20head&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wong,%20Loke-Yuen&rft.date=2012-12-25&rft.volume=713&rft.spage=109&rft.epage=122&rft.pages=109-122&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.440&rft_dat=%3Cproquest_cross%3E1642267222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221250981&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_440&rfr_iscdi=true