Jettable fluid space and jetting characteristics of a microprint head
The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number ( $\mathit{Oh}$ ) influences droplet formation...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2012-12, Vol.713, p.109-122 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 122 |
---|---|
container_issue | |
container_start_page | 109 |
container_title | Journal of fluid mechanics |
container_volume | 713 |
creator | Wong, Loke-Yuen Lim, Guan-Hui Ye, Thiha Silva, F. B. Shanjeera Zhuo, Jing-Mei Png, Rui-Qi Chua, Soo-Jin Ho, Peter K. H. |
description | The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number (
$\mathit{Oh}$
) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower
$\mathit{Oh}$
limits, but these shift approximately linearly with the piezo pulse voltage amplitude
${V}_{o} $
, which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram. Satellite-free droplets of the model fluid can be jetted over a wide
$\mathit{Oh}$
range, at least 0.025 to 0.5 (corresponding to
$Z= {\mathit{Oh}}^{\ensuremath{-} 1} $
of 40 to 2), by adjusting
${V}_{o} $
appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be
$20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $
under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with
${V}_{o} $
, with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about
$2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $
. This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram. |
doi_str_mv | 10.1017/jfm.2012.440 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642267222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2012_440</cupid><sourcerecordid>1642267222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</originalsourceid><addsrcrecordid>eNqFkD1rHDEQhkVwwBfHnX-AIBhceC-akbS7Ko05OwmGNHG9jLSSrWM_LtJe4X9vHT5CCAFXKuaZZ_S-jF2AWIOA5us2jGsUgGulxAe2AlWbqqmVPmErIRArABSn7FPOWyFACtOs2OaHXxayg-dh2Mee5x05z2nq-bYM4vTE3TMlcotPMS_RZT4HTnyMLs27FKeFP3vqP7OPgYbsz4_vGXu82_y6_VY9_Lz_fnvzUDlp2qWioJzRymsLWkIvZat9SxJ1QCFrdKitsKEXTVAgrKI2eNMrb62URpGt5Rm7evPu0vx77_PSjTE7Pww0-XmfO6gVYt0g4vso1nUDqgVT0C__oNt5n6YSpFAIqIVpoVDXb1RJnnPyoSv5R0ovHYjuUH9X6u8O9Xel_oJfHqWUHQ0h0eRi_rNTfqmhMQdufdTSaFPsn_xf1_8nfgVnzpJI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221250981</pqid></control><display><type>article</type><title>Jettable fluid space and jetting characteristics of a microprint head</title><source>Cambridge University Press Journals Complete</source><creator>Wong, Loke-Yuen ; Lim, Guan-Hui ; Ye, Thiha ; Silva, F. B. Shanjeera ; Zhuo, Jing-Mei ; Png, Rui-Qi ; Chua, Soo-Jin ; Ho, Peter K. H.</creator><creatorcontrib>Wong, Loke-Yuen ; Lim, Guan-Hui ; Ye, Thiha ; Silva, F. B. Shanjeera ; Zhuo, Jing-Mei ; Png, Rui-Qi ; Chua, Soo-Jin ; Ho, Peter K. H.</creatorcontrib><description>The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number (
$\mathit{Oh}$
) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower
$\mathit{Oh}$
limits, but these shift approximately linearly with the piezo pulse voltage amplitude
${V}_{o} $
, which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram. Satellite-free droplets of the model fluid can be jetted over a wide
$\mathit{Oh}$
range, at least 0.025 to 0.5 (corresponding to
$Z= {\mathit{Oh}}^{\ensuremath{-} 1} $
of 40 to 2), by adjusting
${V}_{o} $
appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be
$20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $
under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with
${V}_{o} $
, with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about
$2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $
. This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2012.440</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Applied sciences ; Boundaries ; Computational fluid dynamics ; Droplets ; Electric potential ; Electronics ; Exact sciences and technology ; Fluid flow ; Fluid mechanics ; Fluids ; Hardware ; Ink jet printing ; Input-output equipment ; Microelectronics ; Piezoelectric transducers ; Voltage</subject><ispartof>Journal of fluid mechanics, 2012-12, Vol.713, p.109-122</ispartof><rights>2012 Cambridge University Press</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</citedby><cites>FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112012004405/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27922,27923,55626</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26751790$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wong, Loke-Yuen</creatorcontrib><creatorcontrib>Lim, Guan-Hui</creatorcontrib><creatorcontrib>Ye, Thiha</creatorcontrib><creatorcontrib>Silva, F. B. Shanjeera</creatorcontrib><creatorcontrib>Zhuo, Jing-Mei</creatorcontrib><creatorcontrib>Png, Rui-Qi</creatorcontrib><creatorcontrib>Chua, Soo-Jin</creatorcontrib><creatorcontrib>Ho, Peter K. H.</creatorcontrib><title>Jettable fluid space and jetting characteristics of a microprint head</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number (
$\mathit{Oh}$
) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower
$\mathit{Oh}$
limits, but these shift approximately linearly with the piezo pulse voltage amplitude
${V}_{o} $
, which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram. Satellite-free droplets of the model fluid can be jetted over a wide
$\mathit{Oh}$
range, at least 0.025 to 0.5 (corresponding to
$Z= {\mathit{Oh}}^{\ensuremath{-} 1} $
of 40 to 2), by adjusting
${V}_{o} $
appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be
$20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $
under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with
${V}_{o} $
, with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about
$2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $
. This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram.</description><subject>Applied sciences</subject><subject>Boundaries</subject><subject>Computational fluid dynamics</subject><subject>Droplets</subject><subject>Electric potential</subject><subject>Electronics</subject><subject>Exact sciences and technology</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Fluids</subject><subject>Hardware</subject><subject>Ink jet printing</subject><subject>Input-output equipment</subject><subject>Microelectronics</subject><subject>Piezoelectric transducers</subject><subject>Voltage</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkD1rHDEQhkVwwBfHnX-AIBhceC-akbS7Ko05OwmGNHG9jLSSrWM_LtJe4X9vHT5CCAFXKuaZZ_S-jF2AWIOA5us2jGsUgGulxAe2AlWbqqmVPmErIRArABSn7FPOWyFACtOs2OaHXxayg-dh2Mee5x05z2nq-bYM4vTE3TMlcotPMS_RZT4HTnyMLs27FKeFP3vqP7OPgYbsz4_vGXu82_y6_VY9_Lz_fnvzUDlp2qWioJzRymsLWkIvZat9SxJ1QCFrdKitsKEXTVAgrKI2eNMrb62URpGt5Rm7evPu0vx77_PSjTE7Pww0-XmfO6gVYt0g4vso1nUDqgVT0C__oNt5n6YSpFAIqIVpoVDXb1RJnnPyoSv5R0ovHYjuUH9X6u8O9Xel_oJfHqWUHQ0h0eRi_rNTfqmhMQdufdTSaFPsn_xf1_8nfgVnzpJI</recordid><startdate>20121225</startdate><enddate>20121225</enddate><creator>Wong, Loke-Yuen</creator><creator>Lim, Guan-Hui</creator><creator>Ye, Thiha</creator><creator>Silva, F. B. Shanjeera</creator><creator>Zhuo, Jing-Mei</creator><creator>Png, Rui-Qi</creator><creator>Chua, Soo-Jin</creator><creator>Ho, Peter K. H.</creator><general>Cambridge University Press</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7QH</scope></search><sort><creationdate>20121225</creationdate><title>Jettable fluid space and jetting characteristics of a microprint head</title><author>Wong, Loke-Yuen ; Lim, Guan-Hui ; Ye, Thiha ; Silva, F. B. Shanjeera ; Zhuo, Jing-Mei ; Png, Rui-Qi ; Chua, Soo-Jin ; Ho, Peter K. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-af4c954e5b1531d3385e8a325f20362c25b0bfd07f410b4a8fe9d4ebb3394ab63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Applied sciences</topic><topic>Boundaries</topic><topic>Computational fluid dynamics</topic><topic>Droplets</topic><topic>Electric potential</topic><topic>Electronics</topic><topic>Exact sciences and technology</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Fluids</topic><topic>Hardware</topic><topic>Ink jet printing</topic><topic>Input-output equipment</topic><topic>Microelectronics</topic><topic>Piezoelectric transducers</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wong, Loke-Yuen</creatorcontrib><creatorcontrib>Lim, Guan-Hui</creatorcontrib><creatorcontrib>Ye, Thiha</creatorcontrib><creatorcontrib>Silva, F. B. Shanjeera</creatorcontrib><creatorcontrib>Zhuo, Jing-Mei</creatorcontrib><creatorcontrib>Png, Rui-Qi</creatorcontrib><creatorcontrib>Chua, Soo-Jin</creatorcontrib><creatorcontrib>Ho, Peter K. H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Aqualine</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wong, Loke-Yuen</au><au>Lim, Guan-Hui</au><au>Ye, Thiha</au><au>Silva, F. B. Shanjeera</au><au>Zhuo, Jing-Mei</au><au>Png, Rui-Qi</au><au>Chua, Soo-Jin</au><au>Ho, Peter K. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jettable fluid space and jetting characteristics of a microprint head</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2012-12-25</date><risdate>2012</risdate><volume>713</volume><spage>109</spage><epage>122</epage><pages>109-122</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The influence of fluid droplet properties on the droplet-on-demand jetting of a Newtonian model fluid (water–isopropanol–ethylene glycol ternary system) has been studied. The composition of the fluid was adjusted to investigate how the Ohnesorge number (
$\mathit{Oh}$
) influences droplet formation (morphology and speed) by a microfabricated short-channel shear-mode piezoelectric transducer. The fluid space for satellite-free single droplet formation was indeed found to be bound by upper and lower
$\mathit{Oh}$
limits, but these shift approximately linearly with the piezo pulse voltage amplitude
${V}_{o} $
, which has a stronger influence on jetting characteristics than pulse length. Therefore the jettable fluid space can be depicted on a
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram. Satellite-free droplets of the model fluid can be jetted over a wide
$\mathit{Oh}$
range, at least 0.025 to 0.5 (corresponding to
$Z= {\mathit{Oh}}^{\ensuremath{-} 1} $
of 40 to 2), by adjusting
${V}_{o} $
appropriately. Air drag was found to dominate droplet flight, as may be expected. This can be accurately modelled to yield droplet formation time, which turned out to be
$20\text{{\ndash}} 30~\lrm{\ensuremath{\mu}} \mathrm{s} $
under a wide range of jetting conditions. The corresponding initial droplet speed was found to vary linearly with
${V}_{o} $
, with a fluid-dependent threshold but a fluid-independent slope, and a minimum speed of about
$2~\mathrm{m} ~{\mathrm{s} }^{\ensuremath{-} 1} $
. This suggests the existence of iso-velocity lines that run substantially parallel to the lower jetting boundary in the
${V}_{o} {{\ndash}}\mathit{Oh}$
diagram.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2012.440</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2012-12, Vol.713, p.109-122 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642267222 |
source | Cambridge University Press Journals Complete |
subjects | Applied sciences Boundaries Computational fluid dynamics Droplets Electric potential Electronics Exact sciences and technology Fluid flow Fluid mechanics Fluids Hardware Ink jet printing Input-output equipment Microelectronics Piezoelectric transducers Voltage |
title | Jettable fluid space and jetting characteristics of a microprint head |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jettable%20fluid%20space%20and%20jetting%20characteristics%20of%20a%20microprint%20head&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Wong,%20Loke-Yuen&rft.date=2012-12-25&rft.volume=713&rft.spage=109&rft.epage=122&rft.pages=109-122&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/jfm.2012.440&rft_dat=%3Cproquest_cross%3E1642267222%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1221250981&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2012_440&rfr_iscdi=true |