Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta

► Two native to Pearl River Delta algae were used for bioethanol production. ► Both strains exhibited highest growth rates in aerated cultures. ► Accumulation of cellular carbohydrates was highest in early stationary phase. ► Highest bioethanol yield from S. abundans was obtained after two step hydr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2013-01, Vol.127, p.422-428
Hauptverfasser: Guo, Hui, Daroch, Maurycy, Liu, Lei, Qiu, Guoyu, Geng, Shu, Wang, Guangyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 428
container_issue
container_start_page 422
container_title Bioresource technology
container_volume 127
creator Guo, Hui
Daroch, Maurycy
Liu, Lei
Qiu, Guoyu
Geng, Shu
Wang, Guangyi
description ► Two native to Pearl River Delta algae were used for bioethanol production. ► Both strains exhibited highest growth rates in aerated cultures. ► Accumulation of cellular carbohydrates was highest in early stationary phase. ► Highest bioethanol yield from S. abundans was obtained after two step hydrolysis. This study describes identification, cultivation, monitoring of carbohydrate accumulation and bioethanol production from microalgal strains from the coastal waters of Pearl River Delta. Eighteen identified strains belong to the families Chlorellaceae, Scotiellocystoidaceae, Neochloridaceae, Selenastraceae and Scenedesmaceae. Of isolated strains Mychonastes afer PKUAC 9 and Scenedesmus abundans PKUAC 12 were selected for further biomass and ethanol production analysis. Comparison of three cultivation modes (stationary, shaken and aerated) resulted in the highest biomass productivity obtained for aerated cultures that yielded 0.09g and 0.11g dry weight per day per litre of medium for M. afer PKUAC 9 and S. abundans PKUAC 12, respectively. Carbohydrate accumulation monitored by FTIR showed that early stationary phase is optimal for biomass harvest. Microalgal biomass was successfully used as a carbohydrate feedstock for fermentative bioethanol production. S. abundans PKUAC 12 was superior feedstock for bioethanol production when pre-treated with the combination of dilute acid treatment and cellulase.
doi_str_mv 10.1016/j.biortech.2012.10.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642263814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852412015088</els_id><sourcerecordid>1642263814</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-30eafd83537139257294e5a2f7adceb2518dcb4ffb7fd69cbf232b6393c280f63</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhLxRfkLhkGduJ7dyg5VOqBAJ6thxn3PUqiYudFPHv8SpbOK4vlkbPOzP2Q8gFgy0DJt_st12IaUa323JgvBS3APIR2TCtRMVbJR-TDbQSKt3w-ow8y3kPAIIp_pScccGEBtlsCF6G6HY4BmcH6tHOS8JM7dTT0h_nnZ3iQO9S7Bc3hzjR6GlhU7TDrUXqUxypizbPJf3bzpjygfiGNg30e7jHRN_jMNvn5Im3Q8YXx_uc3Hz88PPqc3X99dOXq3fXlau1nisBaH2vRSMUEy1vFG9rbCz3yvYOO94w3buu9r5Tvpet6zwXvJOiFY5r8FKck9dr37LxrwXzbMaQHQ6DnTAu2TBZcy6FZvVptAFQqtagTqO8HAF1rQsqV7R8Uc4JvblLYbTpj2FgDuLM3jyIMwdxh3oRV4IXxxlLN2L_L_ZgqgCvjoDNxZVPdnIh_-cUaNbwtnAvV87baOxtKszNjzKpBmBarM95uxJYTNwHTCa7gJPDPiR0s-ljOLXtX2BCwwE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1222230448</pqid></control><display><type>article</type><title>Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Guo, Hui ; Daroch, Maurycy ; Liu, Lei ; Qiu, Guoyu ; Geng, Shu ; Wang, Guangyi</creator><creatorcontrib>Guo, Hui ; Daroch, Maurycy ; Liu, Lei ; Qiu, Guoyu ; Geng, Shu ; Wang, Guangyi</creatorcontrib><description>► Two native to Pearl River Delta algae were used for bioethanol production. ► Both strains exhibited highest growth rates in aerated cultures. ► Accumulation of cellular carbohydrates was highest in early stationary phase. ► Highest bioethanol yield from S. abundans was obtained after two step hydrolysis. This study describes identification, cultivation, monitoring of carbohydrate accumulation and bioethanol production from microalgal strains from the coastal waters of Pearl River Delta. Eighteen identified strains belong to the families Chlorellaceae, Scotiellocystoidaceae, Neochloridaceae, Selenastraceae and Scenedesmaceae. Of isolated strains Mychonastes afer PKUAC 9 and Scenedesmus abundans PKUAC 12 were selected for further biomass and ethanol production analysis. Comparison of three cultivation modes (stationary, shaken and aerated) resulted in the highest biomass productivity obtained for aerated cultures that yielded 0.09g and 0.11g dry weight per day per litre of medium for M. afer PKUAC 9 and S. abundans PKUAC 12, respectively. Carbohydrate accumulation monitored by FTIR showed that early stationary phase is optimal for biomass harvest. Microalgal biomass was successfully used as a carbohydrate feedstock for fermentative bioethanol production. S. abundans PKUAC 12 was superior feedstock for bioethanol production when pre-treated with the combination of dilute acid treatment and cellulase.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2012.10.006</identifier><identifier>PMID: 23138065</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>acid treatment ; Algal bioethanol ; Amylases - metabolism ; Base Sequence ; Biofuel production ; Biofuels ; Biological and medical sciences ; Biomass ; biomass production ; Biotechnology ; Brackish ; Carbohydrate accumulation ; Carbohydrates ; Carbohydrates - biosynthesis ; Cell Culture Techniques - methods ; Cellulase - metabolism ; China ; Chlorellaceae ; Coastal water ; Deltas ; DNA Primers - genetics ; endo-1,4-beta-glucanase ; Energy ; Ethanol - metabolism ; ethanol production ; Ethyl alcohol ; Feedstock ; feedstocks ; Fourier transform infrared spectroscopy ; Freshwater ; Fundamental and applied biological sciences. Psychology ; Hydrolysis ; Industrial applications and implications. Economical aspects ; Likelihood Functions ; Methods. Procedures. Technologies ; microalgae ; Microalgae - genetics ; Microalgae - metabolism ; Microalgae cultivation ; Microalgae diversity ; Microbial engineering. Fermentation and microbial culture technology ; Models, Genetic ; Molecular Sequence Data ; monitoring ; Neochloridaceae ; Phylogeny ; Polymorphism, Restriction Fragment Length ; river water ; Rivers ; Rivers - microbiology ; RNA, Ribosomal, 18S ; Scenedesmaceae ; Scenedesmus ; Scenedesmus - genetics ; Scenedesmus - metabolism ; Scenedesmus abundans ; Sequence Analysis, DNA ; Spectroscopy, Fourier Transform Infrared ; Strain</subject><ispartof>Bioresource technology, 2013-01, Vol.127, p.422-428</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2012 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-30eafd83537139257294e5a2f7adceb2518dcb4ffb7fd69cbf232b6393c280f63</citedby><cites>FETCH-LOGICAL-c488t-30eafd83537139257294e5a2f7adceb2518dcb4ffb7fd69cbf232b6393c280f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852412015088$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27081529$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23138065$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Daroch, Maurycy</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Qiu, Guoyu</creatorcontrib><creatorcontrib>Geng, Shu</creatorcontrib><creatorcontrib>Wang, Guangyi</creatorcontrib><title>Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>► Two native to Pearl River Delta algae were used for bioethanol production. ► Both strains exhibited highest growth rates in aerated cultures. ► Accumulation of cellular carbohydrates was highest in early stationary phase. ► Highest bioethanol yield from S. abundans was obtained after two step hydrolysis. This study describes identification, cultivation, monitoring of carbohydrate accumulation and bioethanol production from microalgal strains from the coastal waters of Pearl River Delta. Eighteen identified strains belong to the families Chlorellaceae, Scotiellocystoidaceae, Neochloridaceae, Selenastraceae and Scenedesmaceae. Of isolated strains Mychonastes afer PKUAC 9 and Scenedesmus abundans PKUAC 12 were selected for further biomass and ethanol production analysis. Comparison of three cultivation modes (stationary, shaken and aerated) resulted in the highest biomass productivity obtained for aerated cultures that yielded 0.09g and 0.11g dry weight per day per litre of medium for M. afer PKUAC 9 and S. abundans PKUAC 12, respectively. Carbohydrate accumulation monitored by FTIR showed that early stationary phase is optimal for biomass harvest. Microalgal biomass was successfully used as a carbohydrate feedstock for fermentative bioethanol production. S. abundans PKUAC 12 was superior feedstock for bioethanol production when pre-treated with the combination of dilute acid treatment and cellulase.</description><subject>acid treatment</subject><subject>Algal bioethanol</subject><subject>Amylases - metabolism</subject><subject>Base Sequence</subject><subject>Biofuel production</subject><subject>Biofuels</subject><subject>Biological and medical sciences</subject><subject>Biomass</subject><subject>biomass production</subject><subject>Biotechnology</subject><subject>Brackish</subject><subject>Carbohydrate accumulation</subject><subject>Carbohydrates</subject><subject>Carbohydrates - biosynthesis</subject><subject>Cell Culture Techniques - methods</subject><subject>Cellulase - metabolism</subject><subject>China</subject><subject>Chlorellaceae</subject><subject>Coastal water</subject><subject>Deltas</subject><subject>DNA Primers - genetics</subject><subject>endo-1,4-beta-glucanase</subject><subject>Energy</subject><subject>Ethanol - metabolism</subject><subject>ethanol production</subject><subject>Ethyl alcohol</subject><subject>Feedstock</subject><subject>feedstocks</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrolysis</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Likelihood Functions</subject><subject>Methods. Procedures. Technologies</subject><subject>microalgae</subject><subject>Microalgae - genetics</subject><subject>Microalgae - metabolism</subject><subject>Microalgae cultivation</subject><subject>Microalgae diversity</subject><subject>Microbial engineering. Fermentation and microbial culture technology</subject><subject>Models, Genetic</subject><subject>Molecular Sequence Data</subject><subject>monitoring</subject><subject>Neochloridaceae</subject><subject>Phylogeny</subject><subject>Polymorphism, Restriction Fragment Length</subject><subject>river water</subject><subject>Rivers</subject><subject>Rivers - microbiology</subject><subject>RNA, Ribosomal, 18S</subject><subject>Scenedesmaceae</subject><subject>Scenedesmus</subject><subject>Scenedesmus - genetics</subject><subject>Scenedesmus - metabolism</subject><subject>Scenedesmus abundans</subject><subject>Sequence Analysis, DNA</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Strain</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1v1DAQhi0EokvhLxRfkLhkGduJ7dyg5VOqBAJ6thxn3PUqiYudFPHv8SpbOK4vlkbPOzP2Q8gFgy0DJt_st12IaUa323JgvBS3APIR2TCtRMVbJR-TDbQSKt3w-ow8y3kPAIIp_pScccGEBtlsCF6G6HY4BmcH6tHOS8JM7dTT0h_nnZ3iQO9S7Bc3hzjR6GlhU7TDrUXqUxypizbPJf3bzpjygfiGNg30e7jHRN_jMNvn5Im3Q8YXx_uc3Hz88PPqc3X99dOXq3fXlau1nisBaH2vRSMUEy1vFG9rbCz3yvYOO94w3buu9r5Tvpet6zwXvJOiFY5r8FKck9dr37LxrwXzbMaQHQ6DnTAu2TBZcy6FZvVptAFQqtagTqO8HAF1rQsqV7R8Uc4JvblLYbTpj2FgDuLM3jyIMwdxh3oRV4IXxxlLN2L_L_ZgqgCvjoDNxZVPdnIh_-cUaNbwtnAvV87baOxtKszNjzKpBmBarM95uxJYTNwHTCa7gJPDPiR0s-ljOLXtX2BCwwE</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Guo, Hui</creator><creator>Daroch, Maurycy</creator><creator>Liu, Lei</creator><creator>Qiu, Guoyu</creator><creator>Geng, Shu</creator><creator>Wang, Guangyi</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>H98</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>7SU</scope><scope>7TB</scope><scope>C1K</scope><scope>KR7</scope></search><sort><creationdate>201301</creationdate><title>Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta</title><author>Guo, Hui ; Daroch, Maurycy ; Liu, Lei ; Qiu, Guoyu ; Geng, Shu ; Wang, Guangyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-30eafd83537139257294e5a2f7adceb2518dcb4ffb7fd69cbf232b6393c280f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>acid treatment</topic><topic>Algal bioethanol</topic><topic>Amylases - metabolism</topic><topic>Base Sequence</topic><topic>Biofuel production</topic><topic>Biofuels</topic><topic>Biological and medical sciences</topic><topic>Biomass</topic><topic>biomass production</topic><topic>Biotechnology</topic><topic>Brackish</topic><topic>Carbohydrate accumulation</topic><topic>Carbohydrates</topic><topic>Carbohydrates - biosynthesis</topic><topic>Cell Culture Techniques - methods</topic><topic>Cellulase - metabolism</topic><topic>China</topic><topic>Chlorellaceae</topic><topic>Coastal water</topic><topic>Deltas</topic><topic>DNA Primers - genetics</topic><topic>endo-1,4-beta-glucanase</topic><topic>Energy</topic><topic>Ethanol - metabolism</topic><topic>ethanol production</topic><topic>Ethyl alcohol</topic><topic>Feedstock</topic><topic>feedstocks</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrolysis</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Likelihood Functions</topic><topic>Methods. Procedures. Technologies</topic><topic>microalgae</topic><topic>Microalgae - genetics</topic><topic>Microalgae - metabolism</topic><topic>Microalgae cultivation</topic><topic>Microalgae diversity</topic><topic>Microbial engineering. Fermentation and microbial culture technology</topic><topic>Models, Genetic</topic><topic>Molecular Sequence Data</topic><topic>monitoring</topic><topic>Neochloridaceae</topic><topic>Phylogeny</topic><topic>Polymorphism, Restriction Fragment Length</topic><topic>river water</topic><topic>Rivers</topic><topic>Rivers - microbiology</topic><topic>RNA, Ribosomal, 18S</topic><topic>Scenedesmaceae</topic><topic>Scenedesmus</topic><topic>Scenedesmus - genetics</topic><topic>Scenedesmus - metabolism</topic><topic>Scenedesmus abundans</topic><topic>Sequence Analysis, DNA</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Strain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Hui</creatorcontrib><creatorcontrib>Daroch, Maurycy</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Qiu, Guoyu</creatorcontrib><creatorcontrib>Geng, Shu</creatorcontrib><creatorcontrib>Wang, Guangyi</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Aquaculture Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Civil Engineering Abstracts</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Hui</au><au>Daroch, Maurycy</au><au>Liu, Lei</au><au>Qiu, Guoyu</au><au>Geng, Shu</au><au>Wang, Guangyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2013-01</date><risdate>2013</risdate><volume>127</volume><spage>422</spage><epage>428</epage><pages>422-428</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>► Two native to Pearl River Delta algae were used for bioethanol production. ► Both strains exhibited highest growth rates in aerated cultures. ► Accumulation of cellular carbohydrates was highest in early stationary phase. ► Highest bioethanol yield from S. abundans was obtained after two step hydrolysis. This study describes identification, cultivation, monitoring of carbohydrate accumulation and bioethanol production from microalgal strains from the coastal waters of Pearl River Delta. Eighteen identified strains belong to the families Chlorellaceae, Scotiellocystoidaceae, Neochloridaceae, Selenastraceae and Scenedesmaceae. Of isolated strains Mychonastes afer PKUAC 9 and Scenedesmus abundans PKUAC 12 were selected for further biomass and ethanol production analysis. Comparison of three cultivation modes (stationary, shaken and aerated) resulted in the highest biomass productivity obtained for aerated cultures that yielded 0.09g and 0.11g dry weight per day per litre of medium for M. afer PKUAC 9 and S. abundans PKUAC 12, respectively. Carbohydrate accumulation monitored by FTIR showed that early stationary phase is optimal for biomass harvest. Microalgal biomass was successfully used as a carbohydrate feedstock for fermentative bioethanol production. S. abundans PKUAC 12 was superior feedstock for bioethanol production when pre-treated with the combination of dilute acid treatment and cellulase.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23138065</pmid><doi>10.1016/j.biortech.2012.10.006</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2013-01, Vol.127, p.422-428
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1642263814
source MEDLINE; Elsevier ScienceDirect Journals
subjects acid treatment
Algal bioethanol
Amylases - metabolism
Base Sequence
Biofuel production
Biofuels
Biological and medical sciences
Biomass
biomass production
Biotechnology
Brackish
Carbohydrate accumulation
Carbohydrates
Carbohydrates - biosynthesis
Cell Culture Techniques - methods
Cellulase - metabolism
China
Chlorellaceae
Coastal water
Deltas
DNA Primers - genetics
endo-1,4-beta-glucanase
Energy
Ethanol - metabolism
ethanol production
Ethyl alcohol
Feedstock
feedstocks
Fourier transform infrared spectroscopy
Freshwater
Fundamental and applied biological sciences. Psychology
Hydrolysis
Industrial applications and implications. Economical aspects
Likelihood Functions
Methods. Procedures. Technologies
microalgae
Microalgae - genetics
Microalgae - metabolism
Microalgae cultivation
Microalgae diversity
Microbial engineering. Fermentation and microbial culture technology
Models, Genetic
Molecular Sequence Data
monitoring
Neochloridaceae
Phylogeny
Polymorphism, Restriction Fragment Length
river water
Rivers
Rivers - microbiology
RNA, Ribosomal, 18S
Scenedesmaceae
Scenedesmus
Scenedesmus - genetics
Scenedesmus - metabolism
Scenedesmus abundans
Sequence Analysis, DNA
Spectroscopy, Fourier Transform Infrared
Strain
title Biochemical features and bioethanol production of microalgae from coastal waters of Pearl River Delta
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T02%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20features%20and%20bioethanol%20production%20of%20microalgae%20from%20coastal%20waters%20of%20Pearl%20River%20Delta&rft.jtitle=Bioresource%20technology&rft.au=Guo,%20Hui&rft.date=2013-01&rft.volume=127&rft.spage=422&rft.epage=428&rft.pages=422-428&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2012.10.006&rft_dat=%3Cproquest_cross%3E1642263814%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1222230448&rft_id=info:pmid/23138065&rft_els_id=S0960852412015088&rfr_iscdi=true