Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration

[Display omitted] Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta biomaterialia 2014-08, Vol.10 (8), p.3650-3663
Hauptverfasser: Balakrishnan, Biji, Joshi, Nitin, Jayakrishnan, Athipettah, Banerjee, Rinti
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3663
container_issue 8
container_start_page 3650
container_title Acta biomaterialia
container_volume 10
creator Balakrishnan, Biji
Joshi, Nitin
Jayakrishnan, Athipettah
Banerjee, Rinti
description [Display omitted] Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.
doi_str_mv 10.1016/j.actbio.2014.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642262580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114002001</els_id><sourcerecordid>1642262580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</originalsourceid><addsrcrecordid>eNqNkUtrVTEQx4Mo9qHfQCRLF57bJCevsxGk1AcUXKjrkMfkNteck5qcW1r98qbe6lKEgZmB3zz4_xF6QcmGEirPdhvrV5fKhhHKN6THSB-hY6qVHpSQ-nGvFWeDIpIeoZPWdoSMmjL9FB0xrinVTB2jn58hx8HX0lpOyzcIuNymkH70wuZtWuwKZ1vIdk0LvroLtfQG24bTsgO_WpfhNbbhClq6Ady_mdMMa_K4eRtjyaHhWCr2tq4p2y3gCltYoPZ9ZXmGnkSbGzx_yKfo67uLL-cfhstP7z-ev70cPJd0HeykHddOATjimJBqYqOfPJ8m5UVU2kVOgnJRiNEHOU2CUMKE10LHSDwn4yl6ddh7Xcv3PbTVzKl5yNkuUPbNUMkZk0zo_0GZmoRSVHaUH9Df4lWI5rqm2dY7Q4m5d8jszMEhc--QIT1G2sdePlzYuxnC36E_lnTgzQGALslNgmqaT7B4CKl2yU0o6d8XfgE_yqWy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627957716</pqid></control><display><type>article</type><title>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Balakrishnan, Biji ; Joshi, Nitin ; Jayakrishnan, Athipettah ; Banerjee, Rinti</creator><creatorcontrib>Balakrishnan, Biji ; Joshi, Nitin ; Jayakrishnan, Athipettah ; Banerjee, Rinti</creatorcontrib><description>[Display omitted] Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.04.031</identifier><identifier>PMID: 24811827</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adhesiveness ; Adhesives ; Alginate ; Alginates ; Alginates - chemistry ; Animals ; Biocompatibility ; Biomedical materials ; Biomimetic Materials - administration &amp; dosage ; Cartilage ; Cell Adhesion - physiology ; Cell Proliferation - physiology ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - physiology ; Cross-Linking Reagents - chemistry ; Deposition ; Equipment Failure Analysis ; Gelatin - chemistry ; Gelatins ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; Hyaline Cartilage - cytology ; Hyaline Cartilage - growth &amp; development ; Hydrogels ; Hydrogels - chemistry ; Injectable ; Injections ; Materials Testing ; Mice ; Mice, Inbred C57BL ; Oxidation-Reduction ; Prosthesis Design ; Regeneration - physiology ; Tissue Adhesives - administration &amp; dosage ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Scaffolds</subject><ispartof>Acta biomaterialia, 2014-08, Vol.10 (8), p.3650-3663</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</citedby><cites>FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2014.04.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24811827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balakrishnan, Biji</creatorcontrib><creatorcontrib>Joshi, Nitin</creatorcontrib><creatorcontrib>Jayakrishnan, Athipettah</creatorcontrib><creatorcontrib>Banerjee, Rinti</creatorcontrib><title>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted] Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.</description><subject>Adhesiveness</subject><subject>Adhesives</subject><subject>Alginate</subject><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - administration &amp; dosage</subject><subject>Cartilage</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - physiology</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Deposition</subject><subject>Equipment Failure Analysis</subject><subject>Gelatin - chemistry</subject><subject>Gelatins</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hyaline Cartilage - cytology</subject><subject>Hyaline Cartilage - growth &amp; development</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Injectable</subject><subject>Injections</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Oxidation-Reduction</subject><subject>Prosthesis Design</subject><subject>Regeneration - physiology</subject><subject>Tissue Adhesives - administration &amp; dosage</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Scaffolds</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrVTEQx4Mo9qHfQCRLF57bJCevsxGk1AcUXKjrkMfkNteck5qcW1r98qbe6lKEgZmB3zz4_xF6QcmGEirPdhvrV5fKhhHKN6THSB-hY6qVHpSQ-nGvFWeDIpIeoZPWdoSMmjL9FB0xrinVTB2jn58hx8HX0lpOyzcIuNymkH70wuZtWuwKZ1vIdk0LvroLtfQG24bTsgO_WpfhNbbhClq6Ady_mdMMa_K4eRtjyaHhWCr2tq4p2y3gCltYoPZ9ZXmGnkSbGzx_yKfo67uLL-cfhstP7z-ev70cPJd0HeykHddOATjimJBqYqOfPJ8m5UVU2kVOgnJRiNEHOU2CUMKE10LHSDwn4yl6ddh7Xcv3PbTVzKl5yNkuUPbNUMkZk0zo_0GZmoRSVHaUH9Df4lWI5rqm2dY7Q4m5d8jszMEhc--QIT1G2sdePlzYuxnC36E_lnTgzQGALslNgmqaT7B4CKl2yU0o6d8XfgE_yqWy</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Balakrishnan, Biji</creator><creator>Joshi, Nitin</creator><creator>Jayakrishnan, Athipettah</creator><creator>Banerjee, Rinti</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</title><author>Balakrishnan, Biji ; Joshi, Nitin ; Jayakrishnan, Athipettah ; Banerjee, Rinti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesiveness</topic><topic>Adhesives</topic><topic>Alginate</topic><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - administration &amp; dosage</topic><topic>Cartilage</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - physiology</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Deposition</topic><topic>Equipment Failure Analysis</topic><topic>Gelatin - chemistry</topic><topic>Gelatins</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hyaline Cartilage - cytology</topic><topic>Hyaline Cartilage - growth &amp; development</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Injectable</topic><topic>Injections</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Oxidation-Reduction</topic><topic>Prosthesis Design</topic><topic>Regeneration - physiology</topic><topic>Tissue Adhesives - administration &amp; dosage</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Biji</creatorcontrib><creatorcontrib>Joshi, Nitin</creatorcontrib><creatorcontrib>Jayakrishnan, Athipettah</creatorcontrib><creatorcontrib>Banerjee, Rinti</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Biji</au><au>Joshi, Nitin</au><au>Jayakrishnan, Athipettah</au><au>Banerjee, Rinti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>3650</spage><epage>3663</epage><pages>3650-3663</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted] Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24811827</pmid><doi>10.1016/j.actbio.2014.04.031</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-7061
ispartof Acta biomaterialia, 2014-08, Vol.10 (8), p.3650-3663
issn 1742-7061
1878-7568
language eng
recordid cdi_proquest_miscellaneous_1642262580
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Adhesiveness
Adhesives
Alginate
Alginates
Alginates - chemistry
Animals
Biocompatibility
Biomedical materials
Biomimetic Materials - administration & dosage
Cartilage
Cell Adhesion - physiology
Cell Proliferation - physiology
Cells, Cultured
Chondrocytes - cytology
Chondrocytes - physiology
Cross-Linking Reagents - chemistry
Deposition
Equipment Failure Analysis
Gelatin - chemistry
Gelatins
Glucuronic Acid - chemistry
Hexuronic Acids - chemistry
Hyaline Cartilage - cytology
Hyaline Cartilage - growth & development
Hydrogels
Hydrogels - chemistry
Injectable
Injections
Materials Testing
Mice
Mice, Inbred C57BL
Oxidation-Reduction
Prosthesis Design
Regeneration - physiology
Tissue Adhesives - administration & dosage
Tissue engineering
Tissue Engineering - instrumentation
Tissue Scaffolds
title Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-crosslinked%20oxidized%20alginate/gelatin%20hydrogel%20as%20injectable,%20adhesive%20biomimetic%20scaffolds%20for%20cartilage%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Balakrishnan,%20Biji&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=3650&rft.epage=3663&rft.pages=3650-3663&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.04.031&rft_dat=%3Cproquest_cross%3E1642262580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627957716&rft_id=info:pmid/24811827&rft_els_id=S1742706114002001&rfr_iscdi=true