Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration
[Display omitted] Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-cr...
Gespeichert in:
Veröffentlicht in: | Acta biomaterialia 2014-08, Vol.10 (8), p.3650-3663 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3663 |
---|---|
container_issue | 8 |
container_start_page | 3650 |
container_title | Acta biomaterialia |
container_volume | 10 |
creator | Balakrishnan, Biji Joshi, Nitin Jayakrishnan, Athipettah Banerjee, Rinti |
description | [Display omitted]
Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis. |
doi_str_mv | 10.1016/j.actbio.2014.04.031 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642262580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1742706114002001</els_id><sourcerecordid>1642262580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</originalsourceid><addsrcrecordid>eNqNkUtrVTEQx4Mo9qHfQCRLF57bJCevsxGk1AcUXKjrkMfkNteck5qcW1r98qbe6lKEgZmB3zz4_xF6QcmGEirPdhvrV5fKhhHKN6THSB-hY6qVHpSQ-nGvFWeDIpIeoZPWdoSMmjL9FB0xrinVTB2jn58hx8HX0lpOyzcIuNymkH70wuZtWuwKZ1vIdk0LvroLtfQG24bTsgO_WpfhNbbhClq6Ady_mdMMa_K4eRtjyaHhWCr2tq4p2y3gCltYoPZ9ZXmGnkSbGzx_yKfo67uLL-cfhstP7z-ev70cPJd0HeykHddOATjimJBqYqOfPJ8m5UVU2kVOgnJRiNEHOU2CUMKE10LHSDwn4yl6ddh7Xcv3PbTVzKl5yNkuUPbNUMkZk0zo_0GZmoRSVHaUH9Df4lWI5rqm2dY7Q4m5d8jszMEhc--QIT1G2sdePlzYuxnC36E_lnTgzQGALslNgmqaT7B4CKl2yU0o6d8XfgE_yqWy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1627957716</pqid></control><display><type>article</type><title>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Balakrishnan, Biji ; Joshi, Nitin ; Jayakrishnan, Athipettah ; Banerjee, Rinti</creator><creatorcontrib>Balakrishnan, Biji ; Joshi, Nitin ; Jayakrishnan, Athipettah ; Banerjee, Rinti</creatorcontrib><description>[Display omitted]
Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.</description><identifier>ISSN: 1742-7061</identifier><identifier>EISSN: 1878-7568</identifier><identifier>DOI: 10.1016/j.actbio.2014.04.031</identifier><identifier>PMID: 24811827</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Adhesiveness ; Adhesives ; Alginate ; Alginates ; Alginates - chemistry ; Animals ; Biocompatibility ; Biomedical materials ; Biomimetic Materials - administration & dosage ; Cartilage ; Cell Adhesion - physiology ; Cell Proliferation - physiology ; Cells, Cultured ; Chondrocytes - cytology ; Chondrocytes - physiology ; Cross-Linking Reagents - chemistry ; Deposition ; Equipment Failure Analysis ; Gelatin - chemistry ; Gelatins ; Glucuronic Acid - chemistry ; Hexuronic Acids - chemistry ; Hyaline Cartilage - cytology ; Hyaline Cartilage - growth & development ; Hydrogels ; Hydrogels - chemistry ; Injectable ; Injections ; Materials Testing ; Mice ; Mice, Inbred C57BL ; Oxidation-Reduction ; Prosthesis Design ; Regeneration - physiology ; Tissue Adhesives - administration & dosage ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Scaffolds</subject><ispartof>Acta biomaterialia, 2014-08, Vol.10 (8), p.3650-3663</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</citedby><cites>FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actbio.2014.04.031$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24811827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Balakrishnan, Biji</creatorcontrib><creatorcontrib>Joshi, Nitin</creatorcontrib><creatorcontrib>Jayakrishnan, Athipettah</creatorcontrib><creatorcontrib>Banerjee, Rinti</creatorcontrib><title>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</title><title>Acta biomaterialia</title><addtitle>Acta Biomater</addtitle><description>[Display omitted]
Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.</description><subject>Adhesiveness</subject><subject>Adhesives</subject><subject>Alginate</subject><subject>Alginates</subject><subject>Alginates - chemistry</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomimetic Materials - administration & dosage</subject><subject>Cartilage</subject><subject>Cell Adhesion - physiology</subject><subject>Cell Proliferation - physiology</subject><subject>Cells, Cultured</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - physiology</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Deposition</subject><subject>Equipment Failure Analysis</subject><subject>Gelatin - chemistry</subject><subject>Gelatins</subject><subject>Glucuronic Acid - chemistry</subject><subject>Hexuronic Acids - chemistry</subject><subject>Hyaline Cartilage - cytology</subject><subject>Hyaline Cartilage - growth & development</subject><subject>Hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Injectable</subject><subject>Injections</subject><subject>Materials Testing</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Oxidation-Reduction</subject><subject>Prosthesis Design</subject><subject>Regeneration - physiology</subject><subject>Tissue Adhesives - administration & dosage</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Scaffolds</subject><issn>1742-7061</issn><issn>1878-7568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtrVTEQx4Mo9qHfQCRLF57bJCevsxGk1AcUXKjrkMfkNteck5qcW1r98qbe6lKEgZmB3zz4_xF6QcmGEirPdhvrV5fKhhHKN6THSB-hY6qVHpSQ-nGvFWeDIpIeoZPWdoSMmjL9FB0xrinVTB2jn58hx8HX0lpOyzcIuNymkH70wuZtWuwKZ1vIdk0LvroLtfQG24bTsgO_WpfhNbbhClq6Ady_mdMMa_K4eRtjyaHhWCr2tq4p2y3gCltYoPZ9ZXmGnkSbGzx_yKfo67uLL-cfhstP7z-ev70cPJd0HeykHddOATjimJBqYqOfPJ8m5UVU2kVOgnJRiNEHOU2CUMKE10LHSDwn4yl6ddh7Xcv3PbTVzKl5yNkuUPbNUMkZk0zo_0GZmoRSVHaUH9Df4lWI5rqm2dY7Q4m5d8jszMEhc--QIT1G2sdePlzYuxnC36E_lnTgzQGALslNgmqaT7B4CKl2yU0o6d8XfgE_yqWy</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Balakrishnan, Biji</creator><creator>Joshi, Nitin</creator><creator>Jayakrishnan, Athipettah</creator><creator>Banerjee, Rinti</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</title><author>Balakrishnan, Biji ; Joshi, Nitin ; Jayakrishnan, Athipettah ; Banerjee, Rinti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-a98b48b7eeb0b2567923c9c4997c5f78bf40d7bf553cd699501025c858ff0c403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Adhesiveness</topic><topic>Adhesives</topic><topic>Alginate</topic><topic>Alginates</topic><topic>Alginates - chemistry</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomimetic Materials - administration & dosage</topic><topic>Cartilage</topic><topic>Cell Adhesion - physiology</topic><topic>Cell Proliferation - physiology</topic><topic>Cells, Cultured</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - physiology</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Deposition</topic><topic>Equipment Failure Analysis</topic><topic>Gelatin - chemistry</topic><topic>Gelatins</topic><topic>Glucuronic Acid - chemistry</topic><topic>Hexuronic Acids - chemistry</topic><topic>Hyaline Cartilage - cytology</topic><topic>Hyaline Cartilage - growth & development</topic><topic>Hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Injectable</topic><topic>Injections</topic><topic>Materials Testing</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Oxidation-Reduction</topic><topic>Prosthesis Design</topic><topic>Regeneration - physiology</topic><topic>Tissue Adhesives - administration & dosage</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Balakrishnan, Biji</creatorcontrib><creatorcontrib>Joshi, Nitin</creatorcontrib><creatorcontrib>Jayakrishnan, Athipettah</creatorcontrib><creatorcontrib>Banerjee, Rinti</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acta biomaterialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Balakrishnan, Biji</au><au>Joshi, Nitin</au><au>Jayakrishnan, Athipettah</au><au>Banerjee, Rinti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration</atitle><jtitle>Acta biomaterialia</jtitle><addtitle>Acta Biomater</addtitle><date>2014-08-01</date><risdate>2014</risdate><volume>10</volume><issue>8</issue><spage>3650</spage><epage>3663</epage><pages>3650-3663</pages><issn>1742-7061</issn><eissn>1878-7568</eissn><abstract>[Display omitted]
Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>24811827</pmid><doi>10.1016/j.actbio.2014.04.031</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-7061 |
ispartof | Acta biomaterialia, 2014-08, Vol.10 (8), p.3650-3663 |
issn | 1742-7061 1878-7568 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642262580 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Adhesiveness Adhesives Alginate Alginates Alginates - chemistry Animals Biocompatibility Biomedical materials Biomimetic Materials - administration & dosage Cartilage Cell Adhesion - physiology Cell Proliferation - physiology Cells, Cultured Chondrocytes - cytology Chondrocytes - physiology Cross-Linking Reagents - chemistry Deposition Equipment Failure Analysis Gelatin - chemistry Gelatins Glucuronic Acid - chemistry Hexuronic Acids - chemistry Hyaline Cartilage - cytology Hyaline Cartilage - growth & development Hydrogels Hydrogels - chemistry Injectable Injections Materials Testing Mice Mice, Inbred C57BL Oxidation-Reduction Prosthesis Design Regeneration - physiology Tissue Adhesives - administration & dosage Tissue engineering Tissue Engineering - instrumentation Tissue Scaffolds |
title | Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-crosslinked%20oxidized%20alginate/gelatin%20hydrogel%20as%20injectable,%20adhesive%20biomimetic%20scaffolds%20for%20cartilage%20regeneration&rft.jtitle=Acta%20biomaterialia&rft.au=Balakrishnan,%20Biji&rft.date=2014-08-01&rft.volume=10&rft.issue=8&rft.spage=3650&rft.epage=3663&rft.pages=3650-3663&rft.issn=1742-7061&rft.eissn=1878-7568&rft_id=info:doi/10.1016/j.actbio.2014.04.031&rft_dat=%3Cproquest_cross%3E1642262580%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1627957716&rft_id=info:pmid/24811827&rft_els_id=S1742706114002001&rfr_iscdi=true |