Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe

In this work, a thin ZnSe layer was deposited in a vacuum and then thermally annealed in air to provide an efficient electron extraction layer for an inverted organic photovoltaic (OPV) cell. Annealing the ZnSe film at 450 degree C (ZnSe sub((450 degree C))) increased the device performance and gave...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2014-10, Vol.2 (45), p.19201-19207
Hauptverfasser: New, Edward, Hancox, Ian, Rochford, Luke A, Walker, Marc, Dearden, Chloe Argent, McConville, Chris F, Jones, TimS
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19207
container_issue 45
container_start_page 19201
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 2
creator New, Edward
Hancox, Ian
Rochford, Luke A
Walker, Marc
Dearden, Chloe Argent
McConville, Chris F
Jones, TimS
description In this work, a thin ZnSe layer was deposited in a vacuum and then thermally annealed in air to provide an efficient electron extraction layer for an inverted organic photovoltaic (OPV) cell. Annealing the ZnSe film at 450 degree C (ZnSe sub((450 degree C))) increased the device performance and gave an efficiency of 2.83%. X-ray photoelectron spectroscopy (XPS) measurements show that the increased device performance upon annealing at 450 degree C is due to the thermal conversion of ZnSe to ZnO. ZnO has a wider band gap than ZnSe, which allows for more light to reach the photoactive layer. The electronic structures of the treated ZnSe films were explored by ultraviolet photoemission spectroscopy (UPS) which showed that the ZnSe sub((450 degree C)) films had a Fermi level close to the conduction band edge, allowing for efficient electron extraction compared to the energetic barrier for extraction formed at the ZnSe sub((RT))/organic interface.
doi_str_mv 10.1039/c4ta04459b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642260714</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1642260714</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-9e88f368f385023d91dc33f2597d853c316f6efb51f556e71b82406138d120563</originalsourceid><addsrcrecordid>eNqNkUtLAzEQx4MoWLQXP0GOIqwmm8cmx1p8QaEH68XLkmaTNpJuapIt9tubWvHswDAzzI8_8wDgCqNbjIi80zQrRCmTyxMwqhFDVUMlP_3LhTgH45Q-UDGBEJdyBMI8rlTvNNyuQw674LMqhTbeJzhk511y_Qq-93NovNE5hh6arxyVzq6kXu1NTHAbQzdo08G8jmFYrUs0caM81KHfFeCABltUXs0lOLPKJzP-jRfg7fFhMX2uZvOnl-lkVmlCSK6kEcISXlwwVJNO4q40bM1k0wlGNMHccmOXDFvGuGnwUtQUcUxEh8u2nFyA66Nume1zMCm3G5cOa6nehCG1mNO65qjB9B8oYQjzcsOC3hxRHUNK0dh2G91GxX2LUXv4QTuli8nPD-7JN-m8edA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635016050</pqid></control><display><type>article</type><title>Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>New, Edward ; Hancox, Ian ; Rochford, Luke A ; Walker, Marc ; Dearden, Chloe Argent ; McConville, Chris F ; Jones, TimS</creator><creatorcontrib>New, Edward ; Hancox, Ian ; Rochford, Luke A ; Walker, Marc ; Dearden, Chloe Argent ; McConville, Chris F ; Jones, TimS</creatorcontrib><description>In this work, a thin ZnSe layer was deposited in a vacuum and then thermally annealed in air to provide an efficient electron extraction layer for an inverted organic photovoltaic (OPV) cell. Annealing the ZnSe film at 450 degree C (ZnSe sub((450 degree C))) increased the device performance and gave an efficiency of 2.83%. X-ray photoelectron spectroscopy (XPS) measurements show that the increased device performance upon annealing at 450 degree C is due to the thermal conversion of ZnSe to ZnO. ZnO has a wider band gap than ZnSe, which allows for more light to reach the photoactive layer. The electronic structures of the treated ZnSe films were explored by ultraviolet photoemission spectroscopy (UPS) which showed that the ZnSe sub((450 degree C)) films had a Fermi level close to the conduction band edge, allowing for efficient electron extraction compared to the energetic barrier for extraction formed at the ZnSe sub((RT))/organic interface.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c4ta04459b</identifier><language>eng</language><subject>Annealing ; Devices ; Extraction ; Photoelectron spectroscopy ; Photovoltaic cells ; Solar cells ; Zinc oxide ; Zinc selenides</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2014-10, Vol.2 (45), p.19201-19207</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-9e88f368f385023d91dc33f2597d853c316f6efb51f556e71b82406138d120563</citedby><cites>FETCH-LOGICAL-c333t-9e88f368f385023d91dc33f2597d853c316f6efb51f556e71b82406138d120563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>New, Edward</creatorcontrib><creatorcontrib>Hancox, Ian</creatorcontrib><creatorcontrib>Rochford, Luke A</creatorcontrib><creatorcontrib>Walker, Marc</creatorcontrib><creatorcontrib>Dearden, Chloe Argent</creatorcontrib><creatorcontrib>McConville, Chris F</creatorcontrib><creatorcontrib>Jones, TimS</creatorcontrib><title>Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>In this work, a thin ZnSe layer was deposited in a vacuum and then thermally annealed in air to provide an efficient electron extraction layer for an inverted organic photovoltaic (OPV) cell. Annealing the ZnSe film at 450 degree C (ZnSe sub((450 degree C))) increased the device performance and gave an efficiency of 2.83%. X-ray photoelectron spectroscopy (XPS) measurements show that the increased device performance upon annealing at 450 degree C is due to the thermal conversion of ZnSe to ZnO. ZnO has a wider band gap than ZnSe, which allows for more light to reach the photoactive layer. The electronic structures of the treated ZnSe films were explored by ultraviolet photoemission spectroscopy (UPS) which showed that the ZnSe sub((450 degree C)) films had a Fermi level close to the conduction band edge, allowing for efficient electron extraction compared to the energetic barrier for extraction formed at the ZnSe sub((RT))/organic interface.</description><subject>Annealing</subject><subject>Devices</subject><subject>Extraction</subject><subject>Photoelectron spectroscopy</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Zinc oxide</subject><subject>Zinc selenides</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLAzEQx4MoWLQXP0GOIqwmm8cmx1p8QaEH68XLkmaTNpJuapIt9tubWvHswDAzzI8_8wDgCqNbjIi80zQrRCmTyxMwqhFDVUMlP_3LhTgH45Q-UDGBEJdyBMI8rlTvNNyuQw674LMqhTbeJzhk511y_Qq-93NovNE5hh6arxyVzq6kXu1NTHAbQzdo08G8jmFYrUs0caM81KHfFeCABltUXs0lOLPKJzP-jRfg7fFhMX2uZvOnl-lkVmlCSK6kEcISXlwwVJNO4q40bM1k0wlGNMHccmOXDFvGuGnwUtQUcUxEh8u2nFyA66Nume1zMCm3G5cOa6nehCG1mNO65qjB9B8oYQjzcsOC3hxRHUNK0dh2G91GxX2LUXv4QTuli8nPD-7JN-m8edA</recordid><startdate>20141001</startdate><enddate>20141001</enddate><creator>New, Edward</creator><creator>Hancox, Ian</creator><creator>Rochford, Luke A</creator><creator>Walker, Marc</creator><creator>Dearden, Chloe Argent</creator><creator>McConville, Chris F</creator><creator>Jones, TimS</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>7QQ</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20141001</creationdate><title>Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe</title><author>New, Edward ; Hancox, Ian ; Rochford, Luke A ; Walker, Marc ; Dearden, Chloe Argent ; McConville, Chris F ; Jones, TimS</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-9e88f368f385023d91dc33f2597d853c316f6efb51f556e71b82406138d120563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Annealing</topic><topic>Devices</topic><topic>Extraction</topic><topic>Photoelectron spectroscopy</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Zinc oxide</topic><topic>Zinc selenides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>New, Edward</creatorcontrib><creatorcontrib>Hancox, Ian</creatorcontrib><creatorcontrib>Rochford, Luke A</creatorcontrib><creatorcontrib>Walker, Marc</creatorcontrib><creatorcontrib>Dearden, Chloe Argent</creatorcontrib><creatorcontrib>McConville, Chris F</creatorcontrib><creatorcontrib>Jones, TimS</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Ceramic Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>New, Edward</au><au>Hancox, Ian</au><au>Rochford, Luke A</au><au>Walker, Marc</au><au>Dearden, Chloe Argent</au><au>McConville, Chris F</au><au>Jones, TimS</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2014-10-01</date><risdate>2014</risdate><volume>2</volume><issue>45</issue><spage>19201</spage><epage>19207</epage><pages>19201-19207</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>In this work, a thin ZnSe layer was deposited in a vacuum and then thermally annealed in air to provide an efficient electron extraction layer for an inverted organic photovoltaic (OPV) cell. Annealing the ZnSe film at 450 degree C (ZnSe sub((450 degree C))) increased the device performance and gave an efficiency of 2.83%. X-ray photoelectron spectroscopy (XPS) measurements show that the increased device performance upon annealing at 450 degree C is due to the thermal conversion of ZnSe to ZnO. ZnO has a wider band gap than ZnSe, which allows for more light to reach the photoactive layer. The electronic structures of the treated ZnSe films were explored by ultraviolet photoemission spectroscopy (UPS) which showed that the ZnSe sub((450 degree C)) films had a Fermi level close to the conduction band edge, allowing for efficient electron extraction compared to the energetic barrier for extraction formed at the ZnSe sub((RT))/organic interface.</abstract><doi>10.1039/c4ta04459b</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2014-10, Vol.2 (45), p.19201-19207
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1642260714
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Annealing
Devices
Extraction
Photoelectron spectroscopy
Photovoltaic cells
Solar cells
Zinc oxide
Zinc selenides
title Organic photovoltaic cells utilising ZnO electron extraction layers produced through thermal conversion of ZnSe
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20photovoltaic%20cells%20utilising%20ZnO%20electron%20extraction%20layers%20produced%20through%20thermal%20conversion%20of%20ZnSe&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=New,%20Edward&rft.date=2014-10-01&rft.volume=2&rft.issue=45&rft.spage=19201&rft.epage=19207&rft.pages=19201-19207&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c4ta04459b&rft_dat=%3Cproquest_cross%3E1642260714%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1635016050&rft_id=info:pmid/&rfr_iscdi=true