Null Controllability of Three-dimensional Heat Equation in Singular Domains
We study in this paper a class of parabolic equations in singular domains. These equations are defined in a singular cylindrical domain whose cross-section contains one reentrant corner or one straight emerging crack. We assume that the diffusion coefficients are non-smooth in the normal direction....
Gespeichert in:
Veröffentlicht in: | Acta applicandae mathematicae 2014-12, Vol.134 (1), p.87-109 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 109 |
---|---|
container_issue | 1 |
container_start_page | 87 |
container_title | Acta applicandae mathematicae |
container_volume | 134 |
creator | Belghazi, A. H. |
description | We study in this paper a class of parabolic equations in singular domains. These equations are defined in a singular cylindrical domain whose cross-section contains one reentrant corner or one straight emerging crack. We assume that the diffusion coefficients are non-smooth in the normal direction. We will show some
spectral inequality
thanks to Carleman type estimates and the construction of a suitable weight function satisfying some properties. As in Benabdallah et al. (C. R. Acad. Sci. Paris 344(6):357–362,
2007
), we deduce the null-controllability of these equations with the help of the Lebeau-Robbiano method. |
doi_str_mv | 10.1007/s10440-014-9871-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642260692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3477717561</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-67419ac513984c6283c93fbd83f5b6f041cd767b17b6ce0e6d06318428422cd53</originalsourceid><addsrcrecordid>eNp1kFFLwzAQx4MoOKcfwLeCL75E75o2aR9lTicOfXA-hzRNZ0bXbEn7sG9vRn0QQTg4Dn7_4-5HyDXCHQKI-4CQZUABM1oWAik_IRPMRUpLYPyUTAC5oAVgeU4uQtgAACs5n5DXt6Ftk5nreu_aVlW2tf0hcU2y-vLG0NpuTRes61SbLIzqk_l-UH2cE9slH7ZbD63yyaPbKtuFS3LWqDaYq58-JZ9P89VsQZfvzy-zhyXVTGBPuciwVDpHVhaZ5mnBdMmaqi5Yk1e8gQx1LbioUFRcGzC8Bs6wyNJYqa5zNiW3496dd_vBhF5ubdAmnt8ZNwSJPIIceJlG9OYPunGDj98cKYxuckQWKRwp7V0I3jRy5-1W-YNEkEe9ctQro1551Ct5zKRjJkS2Wxv_a_O_oW_gpXtk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1619035113</pqid></control><display><type>article</type><title>Null Controllability of Three-dimensional Heat Equation in Singular Domains</title><source>SpringerLink Journals - AutoHoldings</source><creator>Belghazi, A. H.</creator><creatorcontrib>Belghazi, A. H.</creatorcontrib><description>We study in this paper a class of parabolic equations in singular domains. These equations are defined in a singular cylindrical domain whose cross-section contains one reentrant corner or one straight emerging crack. We assume that the diffusion coefficients are non-smooth in the normal direction. We will show some
spectral inequality
thanks to Carleman type estimates and the construction of a suitable weight function satisfying some properties. As in Benabdallah et al. (C. R. Acad. Sci. Paris 344(6):357–362,
2007
), we deduce the null-controllability of these equations with the help of the Lebeau-Robbiano method.</description><identifier>ISSN: 0167-8019</identifier><identifier>EISSN: 1572-9036</identifier><identifier>DOI: 10.1007/s10440-014-9871-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Computational Mathematics and Numerical Analysis ; Controllability ; Corners ; Cross sections ; Eigenvalues ; Estimates ; Heat conductivity ; Heat equations ; Inequalities ; Inequality ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Probability Theory and Stochastic Processes ; Spectra ; Studies ; Three dimensional ; Topological manifolds</subject><ispartof>Acta applicandae mathematicae, 2014-12, Vol.134 (1), p.87-109</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c371t-67419ac513984c6283c93fbd83f5b6f041cd767b17b6ce0e6d06318428422cd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10440-014-9871-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10440-014-9871-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Belghazi, A. H.</creatorcontrib><title>Null Controllability of Three-dimensional Heat Equation in Singular Domains</title><title>Acta applicandae mathematicae</title><addtitle>Acta Appl Math</addtitle><description>We study in this paper a class of parabolic equations in singular domains. These equations are defined in a singular cylindrical domain whose cross-section contains one reentrant corner or one straight emerging crack. We assume that the diffusion coefficients are non-smooth in the normal direction. We will show some
spectral inequality
thanks to Carleman type estimates and the construction of a suitable weight function satisfying some properties. As in Benabdallah et al. (C. R. Acad. Sci. Paris 344(6):357–362,
2007
), we deduce the null-controllability of these equations with the help of the Lebeau-Robbiano method.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Controllability</subject><subject>Corners</subject><subject>Cross sections</subject><subject>Eigenvalues</subject><subject>Estimates</subject><subject>Heat conductivity</subject><subject>Heat equations</subject><subject>Inequalities</subject><subject>Inequality</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Spectra</subject><subject>Studies</subject><subject>Three dimensional</subject><subject>Topological manifolds</subject><issn>0167-8019</issn><issn>1572-9036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kFFLwzAQx4MoOKcfwLeCL75E75o2aR9lTicOfXA-hzRNZ0bXbEn7sG9vRn0QQTg4Dn7_4-5HyDXCHQKI-4CQZUABM1oWAik_IRPMRUpLYPyUTAC5oAVgeU4uQtgAACs5n5DXt6Ftk5nreu_aVlW2tf0hcU2y-vLG0NpuTRes61SbLIzqk_l-UH2cE9slH7ZbD63yyaPbKtuFS3LWqDaYq58-JZ9P89VsQZfvzy-zhyXVTGBPuciwVDpHVhaZ5mnBdMmaqi5Yk1e8gQx1LbioUFRcGzC8Bs6wyNJYqa5zNiW3496dd_vBhF5ubdAmnt8ZNwSJPIIceJlG9OYPunGDj98cKYxuckQWKRwp7V0I3jRy5-1W-YNEkEe9ctQro1551Ct5zKRjJkS2Wxv_a_O_oW_gpXtk</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Belghazi, A. H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141201</creationdate><title>Null Controllability of Three-dimensional Heat Equation in Singular Domains</title><author>Belghazi, A. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-67419ac513984c6283c93fbd83f5b6f041cd767b17b6ce0e6d06318428422cd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Controllability</topic><topic>Corners</topic><topic>Cross sections</topic><topic>Eigenvalues</topic><topic>Estimates</topic><topic>Heat conductivity</topic><topic>Heat equations</topic><topic>Inequalities</topic><topic>Inequality</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Spectra</topic><topic>Studies</topic><topic>Three dimensional</topic><topic>Topological manifolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Belghazi, A. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Acta applicandae mathematicae</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Belghazi, A. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Null Controllability of Three-dimensional Heat Equation in Singular Domains</atitle><jtitle>Acta applicandae mathematicae</jtitle><stitle>Acta Appl Math</stitle><date>2014-12-01</date><risdate>2014</risdate><volume>134</volume><issue>1</issue><spage>87</spage><epage>109</epage><pages>87-109</pages><issn>0167-8019</issn><eissn>1572-9036</eissn><abstract>We study in this paper a class of parabolic equations in singular domains. These equations are defined in a singular cylindrical domain whose cross-section contains one reentrant corner or one straight emerging crack. We assume that the diffusion coefficients are non-smooth in the normal direction. We will show some
spectral inequality
thanks to Carleman type estimates and the construction of a suitable weight function satisfying some properties. As in Benabdallah et al. (C. R. Acad. Sci. Paris 344(6):357–362,
2007
), we deduce the null-controllability of these equations with the help of the Lebeau-Robbiano method.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10440-014-9871-6</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-8019 |
ispartof | Acta applicandae mathematicae, 2014-12, Vol.134 (1), p.87-109 |
issn | 0167-8019 1572-9036 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642260692 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Computational Mathematics and Numerical Analysis Controllability Corners Cross sections Eigenvalues Estimates Heat conductivity Heat equations Inequalities Inequality Mathematical analysis Mathematics Mathematics and Statistics Partial Differential Equations Probability Theory and Stochastic Processes Spectra Studies Three dimensional Topological manifolds |
title | Null Controllability of Three-dimensional Heat Equation in Singular Domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T10%3A59%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Null%20Controllability%20of%20Three-dimensional%20Heat%20Equation%20in%20Singular%20Domains&rft.jtitle=Acta%20applicandae%20mathematicae&rft.au=Belghazi,%20A.%20H.&rft.date=2014-12-01&rft.volume=134&rft.issue=1&rft.spage=87&rft.epage=109&rft.pages=87-109&rft.issn=0167-8019&rft.eissn=1572-9036&rft_id=info:doi/10.1007/s10440-014-9871-6&rft_dat=%3Cproquest_cross%3E3477717561%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1619035113&rft_id=info:pmid/&rfr_iscdi=true |