Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration

For calibrating the conceptual hydrological models (CHM), the traditional calibration method with a single objective cannot properly measure all the behaviors of the hydrological system. To obtain a successful parameters calibration, in this paper, we propose a multi-objective cultural self-adaptive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources management 2014-02, Vol.28 (3), p.767-783
Hauptverfasser: Zhou, Jianzhong, Ouyang, Shuo, Wang, Xuemin, Ye, Lei, Wang, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 783
container_issue 3
container_start_page 767
container_title Water resources management
container_volume 28
creator Zhou, Jianzhong
Ouyang, Shuo
Wang, Xuemin
Ye, Lei
Wang, Hao
description For calibrating the conceptual hydrological models (CHM), the traditional calibration method with a single objective cannot properly measure all the behaviors of the hydrological system. To obtain a successful parameters calibration, in this paper, we propose a multi-objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm, which is first implemented in solving the parameters calibration problem of CHM. In this algorithm, a self-adaptive parameter is applied in local search operation for adjusting the values of parameters dynamically. Meanwhile, cultural algorithm (CA) is adopted to keep a good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is tested, firstly, by several benchmark test problems. After achieving satisfactory performance on the test problems, a case study is implemented for parameter calibration of a CHM by comparing the properties of POS obtained by the MOCSEM and other methods. Finally, when the optimization problem quickly becomes a decision-making problem because of the multiple objectives in CHM, fuzzy technique for order preference by similarity to an ideal solution method has been used to rank the POS and select the optimal scheme. The results show that the MOCSEM algorithm can provide high-accuracy parameters of CHM on various decision-making scenarios.
doi_str_mv 10.1007/s11269-014-0514-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642260396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1505337880</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-e6d6fea0798286d2611428589e78ef2dcc40129b31bfcda21a14a2d0e39ffe5b3</originalsourceid><addsrcrecordid>eNqFkc2KFDEUhQtRsB19AFcGRHBTevNbFXdN-zPCNCPorEOq6laTNl0pk5QwL-Bzm6YGGVzoJlnc75zcnFNVzym8oQDN20QpU7oGKmqQ5ZAPqg2VDa-pkvCw2oBmUItG0MfVk5SOAEWlYVP92i8-u_q6O2Kf3U8kX2y0J8wYyc5610WbXZiInQayktuco-uWjOQ99i6VYb233910eEe2E9nOs3f9qsmB7MLU45wX68nl7RCDD4cy9WQfBvT3H3haPRqtT_js7r6obj5--La7rK-uP33eba_qXjYq16gGNaKFRresVQNTlArWylZj0-LIhr4XQJnuOO3GfrCMWiosGwC5HkeUHb-oXq--cww_FkzZnFzq0Xs7YViSoUowpoBr9X9UguS8aVso6Mu_0GNY4lQ-YqjQWjS64WeKrlQfQ0oRRzNHd7Lx1lAw5xLNWqIpJZpziUYWzas7Z5tKcGO0Uwn9j7CEQBXXZ2-2cqmMpgPGexv8w_zFKhptMPYQi_HNV1YAgEJoIflvPkG1xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499479730</pqid></control><display><type>article</type><title>Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration</title><source>Springer Nature - Complete Springer Journals</source><creator>Zhou, Jianzhong ; Ouyang, Shuo ; Wang, Xuemin ; Ye, Lei ; Wang, Hao</creator><creatorcontrib>Zhou, Jianzhong ; Ouyang, Shuo ; Wang, Xuemin ; Ye, Lei ; Wang, Hao</creatorcontrib><description>For calibrating the conceptual hydrological models (CHM), the traditional calibration method with a single objective cannot properly measure all the behaviors of the hydrological system. To obtain a successful parameters calibration, in this paper, we propose a multi-objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm, which is first implemented in solving the parameters calibration problem of CHM. In this algorithm, a self-adaptive parameter is applied in local search operation for adjusting the values of parameters dynamically. Meanwhile, cultural algorithm (CA) is adopted to keep a good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is tested, firstly, by several benchmark test problems. After achieving satisfactory performance on the test problems, a case study is implemented for parameter calibration of a CHM by comparing the properties of POS obtained by the MOCSEM and other methods. Finally, when the optimization problem quickly becomes a decision-making problem because of the multiple objectives in CHM, fuzzy technique for order preference by similarity to an ideal solution method has been used to rank the POS and select the optimal scheme. The results show that the MOCSEM algorithm can provide high-accuracy parameters of CHM on various decision-making scenarios.</description><identifier>ISSN: 0920-4741</identifier><identifier>EISSN: 1573-1650</identifier><identifier>DOI: 10.1007/s11269-014-0514-5</identifier><identifier>CODEN: WRMAEJ</identifier><language>eng</language><publisher>Dordrecht: Springer-Verlag</publisher><subject>Algorithms ; Atmospheric Sciences ; Calibration ; Case studies ; Civil Engineering ; Decision making ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Electromagnetism ; Environment ; Evolution ; Exact sciences and technology ; Fuzzy ; Genetic algorithms ; Geotechnical Engineering &amp; Applied Earth Sciences ; Hydroelectric power ; Hydrogeology ; Hydrologic modeling ; Hydrologic models ; Hydrology ; Hydrology. Hydrogeology ; Hydrology/Water Resources ; Knowledge ; Mathematical models ; Optimization ; Parameter estimation ; Pareto optimum ; Physics ; Population ; Searching ; Studies ; system optimization ; Water resources ; Water resources management</subject><ispartof>Water resources management, 2014-02, Vol.28 (3), p.767-783</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-e6d6fea0798286d2611428589e78ef2dcc40129b31bfcda21a14a2d0e39ffe5b3</citedby><cites>FETCH-LOGICAL-c576t-e6d6fea0798286d2611428589e78ef2dcc40129b31bfcda21a14a2d0e39ffe5b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11269-014-0514-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11269-014-0514-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28616390$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhou, Jianzhong</creatorcontrib><creatorcontrib>Ouyang, Shuo</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><title>Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration</title><title>Water resources management</title><addtitle>Water Resour Manage</addtitle><description>For calibrating the conceptual hydrological models (CHM), the traditional calibration method with a single objective cannot properly measure all the behaviors of the hydrological system. To obtain a successful parameters calibration, in this paper, we propose a multi-objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm, which is first implemented in solving the parameters calibration problem of CHM. In this algorithm, a self-adaptive parameter is applied in local search operation for adjusting the values of parameters dynamically. Meanwhile, cultural algorithm (CA) is adopted to keep a good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is tested, firstly, by several benchmark test problems. After achieving satisfactory performance on the test problems, a case study is implemented for parameter calibration of a CHM by comparing the properties of POS obtained by the MOCSEM and other methods. Finally, when the optimization problem quickly becomes a decision-making problem because of the multiple objectives in CHM, fuzzy technique for order preference by similarity to an ideal solution method has been used to rank the POS and select the optimal scheme. The results show that the MOCSEM algorithm can provide high-accuracy parameters of CHM on various decision-making scenarios.</description><subject>Algorithms</subject><subject>Atmospheric Sciences</subject><subject>Calibration</subject><subject>Case studies</subject><subject>Civil Engineering</subject><subject>Decision making</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Electromagnetism</subject><subject>Environment</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>Fuzzy</subject><subject>Genetic algorithms</subject><subject>Geotechnical Engineering &amp; Applied Earth Sciences</subject><subject>Hydroelectric power</subject><subject>Hydrogeology</subject><subject>Hydrologic modeling</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Hydrology/Water Resources</subject><subject>Knowledge</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Pareto optimum</subject><subject>Physics</subject><subject>Population</subject><subject>Searching</subject><subject>Studies</subject><subject>system optimization</subject><subject>Water resources</subject><subject>Water resources management</subject><issn>0920-4741</issn><issn>1573-1650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkc2KFDEUhQtRsB19AFcGRHBTevNbFXdN-zPCNCPorEOq6laTNl0pk5QwL-Bzm6YGGVzoJlnc75zcnFNVzym8oQDN20QpU7oGKmqQ5ZAPqg2VDa-pkvCw2oBmUItG0MfVk5SOAEWlYVP92i8-u_q6O2Kf3U8kX2y0J8wYyc5610WbXZiInQayktuco-uWjOQ99i6VYb233910eEe2E9nOs3f9qsmB7MLU45wX68nl7RCDD4cy9WQfBvT3H3haPRqtT_js7r6obj5--La7rK-uP33eba_qXjYq16gGNaKFRresVQNTlArWylZj0-LIhr4XQJnuOO3GfrCMWiosGwC5HkeUHb-oXq--cww_FkzZnFzq0Xs7YViSoUowpoBr9X9UguS8aVso6Mu_0GNY4lQ-YqjQWjS64WeKrlQfQ0oRRzNHd7Lx1lAw5xLNWqIpJZpziUYWzas7Z5tKcGO0Uwn9j7CEQBXXZ2-2cqmMpgPGexv8w_zFKhptMPYQi_HNV1YAgEJoIflvPkG1xQ</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Zhou, Jianzhong</creator><creator>Ouyang, Shuo</creator><creator>Wang, Xuemin</creator><creator>Ye, Lei</creator><creator>Wang, Hao</creator><general>Springer-Verlag</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L.0</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M0C</scope><scope>M2P</scope><scope>M7P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20140201</creationdate><title>Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration</title><author>Zhou, Jianzhong ; Ouyang, Shuo ; Wang, Xuemin ; Ye, Lei ; Wang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-e6d6fea0798286d2611428589e78ef2dcc40129b31bfcda21a14a2d0e39ffe5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Atmospheric Sciences</topic><topic>Calibration</topic><topic>Case studies</topic><topic>Civil Engineering</topic><topic>Decision making</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Electromagnetism</topic><topic>Environment</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>Fuzzy</topic><topic>Genetic algorithms</topic><topic>Geotechnical Engineering &amp; Applied Earth Sciences</topic><topic>Hydroelectric power</topic><topic>Hydrogeology</topic><topic>Hydrologic modeling</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Hydrology/Water Resources</topic><topic>Knowledge</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Pareto optimum</topic><topic>Physics</topic><topic>Population</topic><topic>Searching</topic><topic>Studies</topic><topic>system optimization</topic><topic>Water resources</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jianzhong</creatorcontrib><creatorcontrib>Ouyang, Shuo</creatorcontrib><creatorcontrib>Wang, Xuemin</creatorcontrib><creatorcontrib>Ye, Lei</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Water resources management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jianzhong</au><au>Ouyang, Shuo</au><au>Wang, Xuemin</au><au>Ye, Lei</au><au>Wang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration</atitle><jtitle>Water resources management</jtitle><stitle>Water Resour Manage</stitle><date>2014-02-01</date><risdate>2014</risdate><volume>28</volume><issue>3</issue><spage>767</spage><epage>783</epage><pages>767-783</pages><issn>0920-4741</issn><eissn>1573-1650</eissn><coden>WRMAEJ</coden><abstract>For calibrating the conceptual hydrological models (CHM), the traditional calibration method with a single objective cannot properly measure all the behaviors of the hydrological system. To obtain a successful parameters calibration, in this paper, we propose a multi-objective cultural self-adaptive electromagnetism-like mechanism (MOCSEM) algorithm, which is first implemented in solving the parameters calibration problem of CHM. In this algorithm, a self-adaptive parameter is applied in local search operation for adjusting the values of parameters dynamically. Meanwhile, cultural algorithm (CA) is adopted to keep a good diversity and uniformity of Pareto-optimal solutions (POS). MOCSEM is tested, firstly, by several benchmark test problems. After achieving satisfactory performance on the test problems, a case study is implemented for parameter calibration of a CHM by comparing the properties of POS obtained by the MOCSEM and other methods. Finally, when the optimization problem quickly becomes a decision-making problem because of the multiple objectives in CHM, fuzzy technique for order preference by similarity to an ideal solution method has been used to rank the POS and select the optimal scheme. The results show that the MOCSEM algorithm can provide high-accuracy parameters of CHM on various decision-making scenarios.</abstract><cop>Dordrecht</cop><pub>Springer-Verlag</pub><doi>10.1007/s11269-014-0514-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-4741
ispartof Water resources management, 2014-02, Vol.28 (3), p.767-783
issn 0920-4741
1573-1650
language eng
recordid cdi_proquest_miscellaneous_1642260396
source Springer Nature - Complete Springer Journals
subjects Algorithms
Atmospheric Sciences
Calibration
Case studies
Civil Engineering
Decision making
Earth and Environmental Science
Earth Sciences
Earth, ocean, space
Electromagnetism
Environment
Evolution
Exact sciences and technology
Fuzzy
Genetic algorithms
Geotechnical Engineering & Applied Earth Sciences
Hydroelectric power
Hydrogeology
Hydrologic modeling
Hydrologic models
Hydrology
Hydrology. Hydrogeology
Hydrology/Water Resources
Knowledge
Mathematical models
Optimization
Parameter estimation
Pareto optimum
Physics
Population
Searching
Studies
system optimization
Water resources
Water resources management
title Multi-Objective Parameter Calibration and Multi-Attribute Decision-Making: An Application to Conceptual Hydrological Model Calibration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A19%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Objective%20Parameter%20Calibration%20and%20Multi-Attribute%20Decision-Making:%20An%20Application%20to%20Conceptual%20Hydrological%20Model%20Calibration&rft.jtitle=Water%20resources%20management&rft.au=Zhou,%20Jianzhong&rft.date=2014-02-01&rft.volume=28&rft.issue=3&rft.spage=767&rft.epage=783&rft.pages=767-783&rft.issn=0920-4741&rft.eissn=1573-1650&rft.coden=WRMAEJ&rft_id=info:doi/10.1007/s11269-014-0514-5&rft_dat=%3Cproquest_cross%3E1505337880%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499479730&rft_id=info:pmid/&rfr_iscdi=true