Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system

The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2014-08, Vol.72, p.636-642
Hauptverfasser: Chandrasekaran, P., Cheralathan, M., Kumaresan, V., Velraj, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 642
container_issue
container_start_page 636
container_title Energy (Oxford)
container_volume 72
creator Chandrasekaran, P.
Cheralathan, M.
Kumaresan, V.
Velraj, R.
description The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature. •Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature
doi_str_mv 10.1016/j.energy.2014.05.089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642259124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544214006562</els_id><sourcerecordid>1642259124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</originalsourceid><addsrcrecordid>eNqNkb-O1DAQxlOAxHHHG1C4QTqKXRzHcZIGCa2OP9IhKKC2vPZ441XWDh6HY1-Q52KiPVEiKmvGv5lP831V9bLm25rX6s1xCxHy4bwVvJZb3m55Pzyprnij-KaVUjyrniMeOedtPwxX1e-7OJpowbERTGElm4geMrOjycYWyAFLsMiSZw-GSrY3SLBN80xF-hUcsGhi8tMSHPu6-8xu55GQdUE8ADutQ8FMr1mIzDCcRyqtmZg1My4TMLfkEA8M0xRc8PRVQorMp8wudzDw1A0QC4mmiRVacKJ5LCkbEsAzFjjdVE-9mRBePL7X1ff3d992Hzf3Xz582r2731jZibJppGpbxZ3zolVeDNJJ7oQQBtzQ8A66Xqk9mSGHzivTWbeHpgXVu75vqAvNdXV72Tvn9GMBLPoU0MI0mQhpQV0rKUQ71EL-B1qvtBwEofKC2pwQM3g953Ay-axrrtdU9VFf3NBrqpq3mlKlsVePCgbJUk_Z2YB_Z0Wvai4GRdzbCwfkzM8AWeNqKN0ZMtiiXQr_FvoDJ0fBIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611642492</pqid></control><display><type>article</type><title>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chandrasekaran, P. ; Cheralathan, M. ; Kumaresan, V. ; Velraj, R.</creator><creatorcontrib>Chandrasekaran, P. ; Cheralathan, M. ; Kumaresan, V. ; Velraj, R.</creatorcontrib><description>The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature. •Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2014.05.089</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; COPPER OXIDE ; Copper oxides ; Energy ; Energy conservation ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; FLUID FLOW ; Heat transfer ; MICROSTRUCTURES ; Nanofluid phase change material ; Nanofluids ; Nanostructure ; Nucleating agent ; OXIDES ; Phase change materials ; PHASE TRANSFORMATIONS ; PHASES ; SOLIDIFICATION ; Subcooling ; Theoretical studies. Data and constants. Metering ; Thermal energy storage ; Transport and storage of energy ; WATER ; Water based</subject><ispartof>Energy (Oxford), 2014-08, Vol.72, p.636-642</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</citedby><cites>FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2014.05.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28610296$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, P.</creatorcontrib><creatorcontrib>Cheralathan, M.</creatorcontrib><creatorcontrib>Kumaresan, V.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><title>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</title><title>Energy (Oxford)</title><description>The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature. •Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature</description><subject>Applied sciences</subject><subject>COPPER OXIDE</subject><subject>Copper oxides</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>Heat transfer</subject><subject>MICROSTRUCTURES</subject><subject>Nanofluid phase change material</subject><subject>Nanofluids</subject><subject>Nanostructure</subject><subject>Nucleating agent</subject><subject>OXIDES</subject><subject>Phase change materials</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PHASES</subject><subject>SOLIDIFICATION</subject><subject>Subcooling</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal energy storage</subject><subject>Transport and storage of energy</subject><subject>WATER</subject><subject>Water based</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkb-O1DAQxlOAxHHHG1C4QTqKXRzHcZIGCa2OP9IhKKC2vPZ441XWDh6HY1-Q52KiPVEiKmvGv5lP831V9bLm25rX6s1xCxHy4bwVvJZb3m55Pzyprnij-KaVUjyrniMeOedtPwxX1e-7OJpowbERTGElm4geMrOjycYWyAFLsMiSZw-GSrY3SLBN80xF-hUcsGhi8tMSHPu6-8xu55GQdUE8ADutQ8FMr1mIzDCcRyqtmZg1My4TMLfkEA8M0xRc8PRVQorMp8wudzDw1A0QC4mmiRVacKJ5LCkbEsAzFjjdVE-9mRBePL7X1ff3d992Hzf3Xz582r2731jZibJppGpbxZ3zolVeDNJJ7oQQBtzQ8A66Xqk9mSGHzivTWbeHpgXVu75vqAvNdXV72Tvn9GMBLPoU0MI0mQhpQV0rKUQ71EL-B1qvtBwEofKC2pwQM3g953Ay-axrrtdU9VFf3NBrqpq3mlKlsVePCgbJUk_Z2YB_Z0Wvai4GRdzbCwfkzM8AWeNqKN0ZMtiiXQr_FvoDJ0fBIQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Chandrasekaran, P.</creator><creator>Cheralathan, M.</creator><creator>Kumaresan, V.</creator><creator>Velraj, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</title><author>Chandrasekaran, P. ; Cheralathan, M. ; Kumaresan, V. ; Velraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>COPPER OXIDE</topic><topic>Copper oxides</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>Heat transfer</topic><topic>MICROSTRUCTURES</topic><topic>Nanofluid phase change material</topic><topic>Nanofluids</topic><topic>Nanostructure</topic><topic>Nucleating agent</topic><topic>OXIDES</topic><topic>Phase change materials</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PHASES</topic><topic>SOLIDIFICATION</topic><topic>Subcooling</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal energy storage</topic><topic>Transport and storage of energy</topic><topic>WATER</topic><topic>Water based</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, P.</creatorcontrib><creatorcontrib>Cheralathan, M.</creatorcontrib><creatorcontrib>Kumaresan, V.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, P.</au><au>Cheralathan, M.</au><au>Kumaresan, V.</au><au>Velraj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</atitle><jtitle>Energy (Oxford)</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>72</volume><spage>636</spage><epage>642</epage><pages>636-642</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature. •Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2014.05.089</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2014-08, Vol.72, p.636-642
issn 0360-5442
language eng
recordid cdi_proquest_miscellaneous_1642259124
source Access via ScienceDirect (Elsevier)
subjects Applied sciences
COPPER OXIDE
Copper oxides
Energy
Energy conservation
Energy. Thermal use of fuels
Evaporation
Exact sciences and technology
FLUID FLOW
Heat transfer
MICROSTRUCTURES
Nanofluid phase change material
Nanofluids
Nanostructure
Nucleating agent
OXIDES
Phase change materials
PHASE TRANSFORMATIONS
PHASES
SOLIDIFICATION
Subcooling
Theoretical studies. Data and constants. Metering
Thermal energy storage
Transport and storage of energy
WATER
Water based
title Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20heat%20transfer%20characteristics%20of%20water%20based%20copper%20oxide%20nanofluid%20PCM%20(phase%20change%20material)%20in%20a%20spherical%20capsule%20during%20solidification%20for%20energy%20efficient%20cool%20thermal%20storage%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Chandrasekaran,%20P.&rft.date=2014-08-01&rft.volume=72&rft.spage=636&rft.epage=642&rft.pages=636-642&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2014.05.089&rft_dat=%3Cproquest_cross%3E1642259124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611642492&rft_id=info:pmid/&rft_els_id=S0360544214006562&rfr_iscdi=true