Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system
The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various b...
Gespeichert in:
Veröffentlicht in: | Energy (Oxford) 2014-08, Vol.72, p.636-642 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 642 |
---|---|
container_issue | |
container_start_page | 636 |
container_title | Energy (Oxford) |
container_volume | 72 |
creator | Chandrasekaran, P. Cheralathan, M. Kumaresan, V. Velraj, R. |
description | The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature.
•Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature |
doi_str_mv | 10.1016/j.energy.2014.05.089 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642259124</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544214006562</els_id><sourcerecordid>1642259124</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</originalsourceid><addsrcrecordid>eNqNkb-O1DAQxlOAxHHHG1C4QTqKXRzHcZIGCa2OP9IhKKC2vPZ441XWDh6HY1-Q52KiPVEiKmvGv5lP831V9bLm25rX6s1xCxHy4bwVvJZb3m55Pzyprnij-KaVUjyrniMeOedtPwxX1e-7OJpowbERTGElm4geMrOjycYWyAFLsMiSZw-GSrY3SLBN80xF-hUcsGhi8tMSHPu6-8xu55GQdUE8ADutQ8FMr1mIzDCcRyqtmZg1My4TMLfkEA8M0xRc8PRVQorMp8wudzDw1A0QC4mmiRVacKJ5LCkbEsAzFjjdVE-9mRBePL7X1ff3d992Hzf3Xz582r2731jZibJppGpbxZ3zolVeDNJJ7oQQBtzQ8A66Xqk9mSGHzivTWbeHpgXVu75vqAvNdXV72Tvn9GMBLPoU0MI0mQhpQV0rKUQ71EL-B1qvtBwEofKC2pwQM3g953Ay-axrrtdU9VFf3NBrqpq3mlKlsVePCgbJUk_Z2YB_Z0Wvai4GRdzbCwfkzM8AWeNqKN0ZMtiiXQr_FvoDJ0fBIQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1611642492</pqid></control><display><type>article</type><title>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chandrasekaran, P. ; Cheralathan, M. ; Kumaresan, V. ; Velraj, R.</creator><creatorcontrib>Chandrasekaran, P. ; Cheralathan, M. ; Kumaresan, V. ; Velraj, R.</creatorcontrib><description>The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature.
•Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature</description><identifier>ISSN: 0360-5442</identifier><identifier>DOI: 10.1016/j.energy.2014.05.089</identifier><identifier>CODEN: ENEYDS</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; COPPER OXIDE ; Copper oxides ; Energy ; Energy conservation ; Energy. Thermal use of fuels ; Evaporation ; Exact sciences and technology ; FLUID FLOW ; Heat transfer ; MICROSTRUCTURES ; Nanofluid phase change material ; Nanofluids ; Nanostructure ; Nucleating agent ; OXIDES ; Phase change materials ; PHASE TRANSFORMATIONS ; PHASES ; SOLIDIFICATION ; Subcooling ; Theoretical studies. Data and constants. Metering ; Thermal energy storage ; Transport and storage of energy ; WATER ; Water based</subject><ispartof>Energy (Oxford), 2014-08, Vol.72, p.636-642</ispartof><rights>2014 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</citedby><cites>FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2014.05.089$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28610296$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chandrasekaran, P.</creatorcontrib><creatorcontrib>Cheralathan, M.</creatorcontrib><creatorcontrib>Kumaresan, V.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><title>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</title><title>Energy (Oxford)</title><description>The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature.
•Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature</description><subject>Applied sciences</subject><subject>COPPER OXIDE</subject><subject>Copper oxides</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Energy. Thermal use of fuels</subject><subject>Evaporation</subject><subject>Exact sciences and technology</subject><subject>FLUID FLOW</subject><subject>Heat transfer</subject><subject>MICROSTRUCTURES</subject><subject>Nanofluid phase change material</subject><subject>Nanofluids</subject><subject>Nanostructure</subject><subject>Nucleating agent</subject><subject>OXIDES</subject><subject>Phase change materials</subject><subject>PHASE TRANSFORMATIONS</subject><subject>PHASES</subject><subject>SOLIDIFICATION</subject><subject>Subcooling</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal energy storage</subject><subject>Transport and storage of energy</subject><subject>WATER</subject><subject>Water based</subject><issn>0360-5442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkb-O1DAQxlOAxHHHG1C4QTqKXRzHcZIGCa2OP9IhKKC2vPZ441XWDh6HY1-Q52KiPVEiKmvGv5lP831V9bLm25rX6s1xCxHy4bwVvJZb3m55Pzyprnij-KaVUjyrniMeOedtPwxX1e-7OJpowbERTGElm4geMrOjycYWyAFLsMiSZw-GSrY3SLBN80xF-hUcsGhi8tMSHPu6-8xu55GQdUE8ADutQ8FMr1mIzDCcRyqtmZg1My4TMLfkEA8M0xRc8PRVQorMp8wudzDw1A0QC4mmiRVacKJ5LCkbEsAzFjjdVE-9mRBePL7X1ff3d992Hzf3Xz582r2731jZibJppGpbxZ3zolVeDNJJ7oQQBtzQ8A66Xqk9mSGHzivTWbeHpgXVu75vqAvNdXV72Tvn9GMBLPoU0MI0mQhpQV0rKUQ71EL-B1qvtBwEofKC2pwQM3g953Ay-axrrtdU9VFf3NBrqpq3mlKlsVePCgbJUk_Z2YB_Z0Wvai4GRdzbCwfkzM8AWeNqKN0ZMtiiXQr_FvoDJ0fBIQ</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Chandrasekaran, P.</creator><creator>Cheralathan, M.</creator><creator>Kumaresan, V.</creator><creator>Velraj, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U6</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20140801</creationdate><title>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</title><author>Chandrasekaran, P. ; Cheralathan, M. ; Kumaresan, V. ; Velraj, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-3465560ddf256f294d40d222aed9307e7866bced497f6a7cdbe35e68d883ed4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>COPPER OXIDE</topic><topic>Copper oxides</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Energy. Thermal use of fuels</topic><topic>Evaporation</topic><topic>Exact sciences and technology</topic><topic>FLUID FLOW</topic><topic>Heat transfer</topic><topic>MICROSTRUCTURES</topic><topic>Nanofluid phase change material</topic><topic>Nanofluids</topic><topic>Nanostructure</topic><topic>Nucleating agent</topic><topic>OXIDES</topic><topic>Phase change materials</topic><topic>PHASE TRANSFORMATIONS</topic><topic>PHASES</topic><topic>SOLIDIFICATION</topic><topic>Subcooling</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal energy storage</topic><topic>Transport and storage of energy</topic><topic>WATER</topic><topic>Water based</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chandrasekaran, P.</creatorcontrib><creatorcontrib>Cheralathan, M.</creatorcontrib><creatorcontrib>Kumaresan, V.</creatorcontrib><creatorcontrib>Velraj, R.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chandrasekaran, P.</au><au>Cheralathan, M.</au><au>Kumaresan, V.</au><au>Velraj, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system</atitle><jtitle>Energy (Oxford)</jtitle><date>2014-08-01</date><risdate>2014</risdate><volume>72</volume><spage>636</spage><epage>642</epage><pages>636-642</pages><issn>0360-5442</issn><coden>ENEYDS</coden><abstract>The present study aims to investigate the solidification characteristics of water based NFPCM (nanofluid phase change material). The NFPCM was prepared by dispersing copper oxide nanoparticles and a nucleating agent in the base PCM (phase change material). The experiments were conducted at various bath temperatures and the NFPCM exhibited a significant reduction in solidification time of about 35% due to enhanced heat transport properties. Further, 50% of total mass solidified during 25% of total solidification time in both PCM and NFPCM. The presence of nucleating agent eliminated the ramifying problem of subcooling in the PCM and this will allow the evaporator to operate at a higher temperature in a chiller. The enhanced heat transfer rate of the NFPCM without subcooling is advantageous for many CTES (cool thermal energy storage) applications. It is construed from the experimental results that considerable energy saving potential is possible in the CTES system by operating the evaporator at a higher temperature.
•Addition of CuO nanoparticle in water reduces solidification time by 35%.•Accelerated charging prevails during initial 25% of total solidified duration.•Considerable energy saving in CTES system by operating evaporator at higher temperature</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2014.05.089</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-5442 |
ispartof | Energy (Oxford), 2014-08, Vol.72, p.636-642 |
issn | 0360-5442 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642259124 |
source | Access via ScienceDirect (Elsevier) |
subjects | Applied sciences COPPER OXIDE Copper oxides Energy Energy conservation Energy. Thermal use of fuels Evaporation Exact sciences and technology FLUID FLOW Heat transfer MICROSTRUCTURES Nanofluid phase change material Nanofluids Nanostructure Nucleating agent OXIDES Phase change materials PHASE TRANSFORMATIONS PHASES SOLIDIFICATION Subcooling Theoretical studies. Data and constants. Metering Thermal energy storage Transport and storage of energy WATER Water based |
title | Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T18%3A40%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20heat%20transfer%20characteristics%20of%20water%20based%20copper%20oxide%20nanofluid%20PCM%20(phase%20change%20material)%20in%20a%20spherical%20capsule%20during%20solidification%20for%20energy%20efficient%20cool%20thermal%20storage%20system&rft.jtitle=Energy%20(Oxford)&rft.au=Chandrasekaran,%20P.&rft.date=2014-08-01&rft.volume=72&rft.spage=636&rft.epage=642&rft.pages=636-642&rft.issn=0360-5442&rft.coden=ENEYDS&rft_id=info:doi/10.1016/j.energy.2014.05.089&rft_dat=%3Cproquest_cross%3E1642259124%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1611642492&rft_id=info:pmid/&rft_els_id=S0360544214006562&rfr_iscdi=true |