Optimization of energy extraction in transverse galloping

A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of atta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluids and structures 2013-11, Vol.43, p.124-144
Hauptverfasser: Sorribes-Palmer, F., Sanz-Andres, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 144
container_issue
container_start_page 124
container_title Journal of fluids and structures
container_volume 43
creator Sorribes-Palmer, F.
Sanz-Andres, A.
description A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.
doi_str_mv 10.1016/j.jfluidstructs.2013.09.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642257651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974613001965</els_id><sourcerecordid>1506377738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwHyJx4ZKwfsSxxQlV5SEh9QJny3E2laM0CXZaUX49KeXCCU67Ws2Mvh1CrilkFKi8bbKmbre-imPYujFmDCjPQGdA6QmZUdB5qiRjp2QGSulUF0Kek4sYGwDQgtMZ0ath9Bv_aUffd0lfJ9hhWO8T_BiDdd9H3yXT3sUdhojJ2rZtP_hufUnOattGvPqZc_L2sHxdPKUvq8fnxf1L6oSQY0oFEzTPy0oAL5XlWDHubJGXCg60QqoJtmbMwUQqma2YEiAkcq7Lqi6Az8nNMXcI_fsW42g2PjpsW9thv42GSsFYXsic_i3NQfKiKLiapHdHqQt9jAFrMwS_sWFvKJhDt6Yxv7o1B1oD2ky4k3t5dOP0-M5jMNF57BxWPqAbTdX7f-V8AYFyiZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506377738</pqid></control><display><type>article</type><title>Optimization of energy extraction in transverse galloping</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sorribes-Palmer, F. ; Sanz-Andres, A.</creator><creatorcontrib>Sorribes-Palmer, F. ; Sanz-Andres, A.</creatorcontrib><description>A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2013.09.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aeroelasticity ; Algorithms ; Angle of attack ; Discretization ; Energy harvesting ; Exact solutions ; Galloping ; Optimization ; Pitch angle ; Polynomials ; Stability ; Transverse galloping</subject><ispartof>Journal of fluids and structures, 2013-11, Vol.43, p.124-144</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</citedby><cites>FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfluidstructs.2013.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sorribes-Palmer, F.</creatorcontrib><creatorcontrib>Sanz-Andres, A.</creatorcontrib><title>Optimization of energy extraction in transverse galloping</title><title>Journal of fluids and structures</title><description>A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.</description><subject>Aeroelasticity</subject><subject>Algorithms</subject><subject>Angle of attack</subject><subject>Discretization</subject><subject>Energy harvesting</subject><subject>Exact solutions</subject><subject>Galloping</subject><subject>Optimization</subject><subject>Pitch angle</subject><subject>Polynomials</subject><subject>Stability</subject><subject>Transverse galloping</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwHyJx4ZKwfsSxxQlV5SEh9QJny3E2laM0CXZaUX49KeXCCU67Ws2Mvh1CrilkFKi8bbKmbre-imPYujFmDCjPQGdA6QmZUdB5qiRjp2QGSulUF0Kek4sYGwDQgtMZ0ath9Bv_aUffd0lfJ9hhWO8T_BiDdd9H3yXT3sUdhojJ2rZtP_hufUnOattGvPqZc_L2sHxdPKUvq8fnxf1L6oSQY0oFEzTPy0oAL5XlWDHubJGXCg60QqoJtmbMwUQqma2YEiAkcq7Lqi6Az8nNMXcI_fsW42g2PjpsW9thv42GSsFYXsic_i3NQfKiKLiapHdHqQt9jAFrMwS_sWFvKJhDt6Yxv7o1B1oD2ky4k3t5dOP0-M5jMNF57BxWPqAbTdX7f-V8AYFyiZE</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Sorribes-Palmer, F.</creator><creator>Sanz-Andres, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201311</creationdate><title>Optimization of energy extraction in transverse galloping</title><author>Sorribes-Palmer, F. ; Sanz-Andres, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aeroelasticity</topic><topic>Algorithms</topic><topic>Angle of attack</topic><topic>Discretization</topic><topic>Energy harvesting</topic><topic>Exact solutions</topic><topic>Galloping</topic><topic>Optimization</topic><topic>Pitch angle</topic><topic>Polynomials</topic><topic>Stability</topic><topic>Transverse galloping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorribes-Palmer, F.</creatorcontrib><creatorcontrib>Sanz-Andres, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorribes-Palmer, F.</au><au>Sanz-Andres, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of energy extraction in transverse galloping</atitle><jtitle>Journal of fluids and structures</jtitle><date>2013-11</date><risdate>2013</risdate><volume>43</volume><spage>124</spage><epage>144</epage><pages>124-144</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><abstract>A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2013.09.011</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0889-9746
ispartof Journal of fluids and structures, 2013-11, Vol.43, p.124-144
issn 0889-9746
1095-8622
language eng
recordid cdi_proquest_miscellaneous_1642257651
source Access via ScienceDirect (Elsevier)
subjects Aeroelasticity
Algorithms
Angle of attack
Discretization
Energy harvesting
Exact solutions
Galloping
Optimization
Pitch angle
Polynomials
Stability
Transverse galloping
title Optimization of energy extraction in transverse galloping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20energy%20extraction%20in%20transverse%20galloping&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Sorribes-Palmer,%20F.&rft.date=2013-11&rft.volume=43&rft.spage=124&rft.epage=144&rft.pages=124-144&rft.issn=0889-9746&rft.eissn=1095-8622&rft_id=info:doi/10.1016/j.jfluidstructs.2013.09.011&rft_dat=%3Cproquest_cross%3E1506377738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506377738&rft_id=info:pmid/&rft_els_id=S0889974613001965&rfr_iscdi=true