Optimization of energy extraction in transverse galloping
A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of atta...
Gespeichert in:
Veröffentlicht in: | Journal of fluids and structures 2013-11, Vol.43, p.124-144 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 144 |
---|---|
container_issue | |
container_start_page | 124 |
container_title | Journal of fluids and structures |
container_volume | 43 |
creator | Sorribes-Palmer, F. Sanz-Andres, A. |
description | A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented. |
doi_str_mv | 10.1016/j.jfluidstructs.2013.09.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642257651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0889974613001965</els_id><sourcerecordid>1506377738</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwHyJx4ZKwfsSxxQlV5SEh9QJny3E2laM0CXZaUX49KeXCCU67Ws2Mvh1CrilkFKi8bbKmbre-imPYujFmDCjPQGdA6QmZUdB5qiRjp2QGSulUF0Kek4sYGwDQgtMZ0ath9Bv_aUffd0lfJ9hhWO8T_BiDdd9H3yXT3sUdhojJ2rZtP_hufUnOattGvPqZc_L2sHxdPKUvq8fnxf1L6oSQY0oFEzTPy0oAL5XlWDHubJGXCg60QqoJtmbMwUQqma2YEiAkcq7Lqi6Az8nNMXcI_fsW42g2PjpsW9thv42GSsFYXsic_i3NQfKiKLiapHdHqQt9jAFrMwS_sWFvKJhDt6Yxv7o1B1oD2ky4k3t5dOP0-M5jMNF57BxWPqAbTdX7f-V8AYFyiZE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1506377738</pqid></control><display><type>article</type><title>Optimization of energy extraction in transverse galloping</title><source>Access via ScienceDirect (Elsevier)</source><creator>Sorribes-Palmer, F. ; Sanz-Andres, A.</creator><creatorcontrib>Sorribes-Palmer, F. ; Sanz-Andres, A.</creatorcontrib><description>A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.</description><identifier>ISSN: 0889-9746</identifier><identifier>EISSN: 1095-8622</identifier><identifier>DOI: 10.1016/j.jfluidstructs.2013.09.011</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Aeroelasticity ; Algorithms ; Angle of attack ; Discretization ; Energy harvesting ; Exact solutions ; Galloping ; Optimization ; Pitch angle ; Polynomials ; Stability ; Transverse galloping</subject><ispartof>Journal of fluids and structures, 2013-11, Vol.43, p.124-144</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</citedby><cites>FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jfluidstructs.2013.09.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Sorribes-Palmer, F.</creatorcontrib><creatorcontrib>Sanz-Andres, A.</creatorcontrib><title>Optimization of energy extraction in transverse galloping</title><title>Journal of fluids and structures</title><description>A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.</description><subject>Aeroelasticity</subject><subject>Algorithms</subject><subject>Angle of attack</subject><subject>Discretization</subject><subject>Energy harvesting</subject><subject>Exact solutions</subject><subject>Galloping</subject><subject>Optimization</subject><subject>Pitch angle</subject><subject>Polynomials</subject><subject>Stability</subject><subject>Transverse galloping</subject><issn>0889-9746</issn><issn>1095-8622</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwHyJx4ZKwfsSxxQlV5SEh9QJny3E2laM0CXZaUX49KeXCCU67Ws2Mvh1CrilkFKi8bbKmbre-imPYujFmDCjPQGdA6QmZUdB5qiRjp2QGSulUF0Kek4sYGwDQgtMZ0ath9Bv_aUffd0lfJ9hhWO8T_BiDdd9H3yXT3sUdhojJ2rZtP_hufUnOattGvPqZc_L2sHxdPKUvq8fnxf1L6oSQY0oFEzTPy0oAL5XlWDHubJGXCg60QqoJtmbMwUQqma2YEiAkcq7Lqi6Az8nNMXcI_fsW42g2PjpsW9thv42GSsFYXsic_i3NQfKiKLiapHdHqQt9jAFrMwS_sWFvKJhDt6Yxv7o1B1oD2ky4k3t5dOP0-M5jMNF57BxWPqAbTdX7f-V8AYFyiZE</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Sorribes-Palmer, F.</creator><creator>Sanz-Andres, A.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>201311</creationdate><title>Optimization of energy extraction in transverse galloping</title><author>Sorribes-Palmer, F. ; Sanz-Andres, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-1424155bd403b8a3ed23ca75b802013468011f22c086262ad284046e339bdf703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aeroelasticity</topic><topic>Algorithms</topic><topic>Angle of attack</topic><topic>Discretization</topic><topic>Energy harvesting</topic><topic>Exact solutions</topic><topic>Galloping</topic><topic>Optimization</topic><topic>Pitch angle</topic><topic>Polynomials</topic><topic>Stability</topic><topic>Transverse galloping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sorribes-Palmer, F.</creatorcontrib><creatorcontrib>Sanz-Andres, A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of fluids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sorribes-Palmer, F.</au><au>Sanz-Andres, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of energy extraction in transverse galloping</atitle><jtitle>Journal of fluids and structures</jtitle><date>2013-11</date><risdate>2013</risdate><volume>43</volume><spage>124</spage><epage>144</epage><pages>124-144</pages><issn>0889-9746</issn><eissn>1095-8622</eissn><abstract>A numerical method to analyse the stability of transverse galloping based on experimental measurements, as an alternative method to polynomial fitting of the transverse force coefficient Cz, is proposed in this paper. The Glauert–Den Hartog criterion is used to determine the region of angles of attack (pitch angles) prone to present galloping. An analytic solution (based on a polynomial curve of Cz) is used to validate the method and to evaluate the discretization errors. Several bodies (of biconvex, D-shape and rhomboidal cross sections) have been tested in a wind tunnel and the stability of the galloping region has been analysed with the new method. An algorithm to determine the pitch angle of the body that allows the maximum value of the kinetic energy of the flow to be extracted is presented.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jfluidstructs.2013.09.011</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0889-9746 |
ispartof | Journal of fluids and structures, 2013-11, Vol.43, p.124-144 |
issn | 0889-9746 1095-8622 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642257651 |
source | Access via ScienceDirect (Elsevier) |
subjects | Aeroelasticity Algorithms Angle of attack Discretization Energy harvesting Exact solutions Galloping Optimization Pitch angle Polynomials Stability Transverse galloping |
title | Optimization of energy extraction in transverse galloping |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A20%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20energy%20extraction%20in%20transverse%20galloping&rft.jtitle=Journal%20of%20fluids%20and%20structures&rft.au=Sorribes-Palmer,%20F.&rft.date=2013-11&rft.volume=43&rft.spage=124&rft.epage=144&rft.pages=124-144&rft.issn=0889-9746&rft.eissn=1095-8622&rft_id=info:doi/10.1016/j.jfluidstructs.2013.09.011&rft_dat=%3Cproquest_cross%3E1506377738%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1506377738&rft_id=info:pmid/&rft_els_id=S0889974613001965&rfr_iscdi=true |