Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols
Colloid (typically
Gespeichert in:
Veröffentlicht in: | Geoderma 2013-09, Vol.206, p.101-111 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 111 |
---|---|
container_issue | |
container_start_page | 101 |
container_title | Geoderma |
container_volume | 206 |
creator | VandeVoort, Allison Rick Livi, Ken J. Arai, Yuji |
description | Colloid (typically |
doi_str_mv | 10.1016/j.geoderma.2013.04.024 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642257323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0016706113001420</els_id><sourcerecordid>1500761032</sourcerecordid><originalsourceid>FETCH-LOGICAL-a455t-6059f024347d7458bebf7e366f4aab7e393d7ebf645a1127d1f58739f47973a03</originalsourceid><addsrcrecordid>eNqFkE-LFDEQxYMoOI5-Be2L4KV786-T6ZuyrLqwIKhzjjXpypoh0xlT3YLf3jSzet1DyKvwy6uqx9hrwTvBhbk6dveYRywn6CQXquO641I_YRuxs7I1sh-esg2vZGu5Ec_ZC6JjLS2XfMN-fEXwc8xT4_M0xlXRKueSU0M5plqklOPYBPAxxRlmHJvzz0z1lIWaggmBsIlTA_cl-iXNS4HU7NMcKSd6yZ4FSISvHu4t23-8-X79ub378un2-sNdC7rv59bwfgh1bKXtaHW_O-AhWFTGBA1wqGpQo61vRvcghLSjCP3OqiFoO1gFXG3Zu4vvueRfC9LsTpE8pgQT5oWcMFrK3iqpHkd7zq0RvLJbZi6oL5moYHDnEk9Q_jjB3Zq-O7p_6bs1fce1W9fYsrcPPYA8pFBg8pH-_5Z1R7WTpnJvLlyA7NYAye2_VaM6QnUb9LrY-wuBNb3fEYsjH3HyOMaCfnZjjo8N8xcEG6g0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1500761032</pqid></control><display><type>article</type><title>Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols</title><source>Elsevier ScienceDirect Journals Complete</source><creator>VandeVoort, Allison Rick ; Livi, Ken J. ; Arai, Yuji</creator><creatorcontrib>VandeVoort, Allison Rick ; Livi, Ken J. ; Arai, Yuji</creatorcontrib><description>Colloid (typically <1μm) facilitated phosphorus (P) transport in agricultural soils has received much research attention in recent decades due to the possibility of a mobile solid form of P, which may increase P runoff in some soils. The existing literature reports inconsistent results of colloidal P release as a percentage of total P in soil solution, separated at operationally defined size definitions by various centrifugation and/or filtration methods. The amount of total soil P attributed to colloidal particles remarkably ranges from 0 to 95%. The cause of colloidal P release has been difficult to assess since their experimental/environmental conditions (e.g., soil type, pH) vary from study to study. The case study presented here aims to focus on three controllable reaction conditions: ionic strength (I), pH and added P concentration, to elucidate their effect on P colloid release. Our case study showed that these reaction conditions do not largely alter the release of colloidal P in Ultisols of the southeastern United States (mildly acidic native pH, low organic C). However, the availability of colloidal P was slightly enhanced at near neutral pH in high [P] or high I (0.1M) solutions. We further discussed these reaction conditions in selected literature studies to better assess the occurrence of colloid facilitated P transport in a wide variety of soil types and conditions.
•Acidic, low organic C soils, do not promote P transport via mobile soil colloids.•Experimental conditions affect the amount of phosphorus carried on soil colloids.•Increasing ionic strength promotes soil nanoparticle coagulation into colloids.•The coagulation properties of soil constituents are mineral-specific.</description><identifier>ISSN: 0016-7061</identifier><identifier>EISSN: 1872-6259</identifier><identifier>DOI: 10.1016/j.geoderma.2013.04.024</identifier><identifier>CODEN: GEDMAB</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>agricultural soils ; Agronomy. Soil science and plant productions ; Availability ; Biological and medical sciences ; case studies ; centrifugation ; Colloid facilitated transport ; Colloids ; Earth sciences ; Earth, ocean, space ; environmental factors ; Exact sciences and technology ; Filtration ; Fundamental and applied biological sciences. Psychology ; Geochemistry ; ionic strength ; Nanoparticles ; Phosphate ; Phosphorus ; Reaction conditions ; Runoff ; Soil (material) ; Soil and rock geochemistry ; soil solution ; Soils ; Sorption ; Surficial geology ; Transport ; Ultisols</subject><ispartof>Geoderma, 2013-09, Vol.206, p.101-111</ispartof><rights>2013 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a455t-6059f024347d7458bebf7e366f4aab7e393d7ebf645a1127d1f58739f47973a03</citedby><cites>FETCH-LOGICAL-a455t-6059f024347d7458bebf7e366f4aab7e393d7ebf645a1127d1f58739f47973a03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geoderma.2013.04.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27453826$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>VandeVoort, Allison Rick</creatorcontrib><creatorcontrib>Livi, Ken J.</creatorcontrib><creatorcontrib>Arai, Yuji</creatorcontrib><title>Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols</title><title>Geoderma</title><description>Colloid (typically <1μm) facilitated phosphorus (P) transport in agricultural soils has received much research attention in recent decades due to the possibility of a mobile solid form of P, which may increase P runoff in some soils. The existing literature reports inconsistent results of colloidal P release as a percentage of total P in soil solution, separated at operationally defined size definitions by various centrifugation and/or filtration methods. The amount of total soil P attributed to colloidal particles remarkably ranges from 0 to 95%. The cause of colloidal P release has been difficult to assess since their experimental/environmental conditions (e.g., soil type, pH) vary from study to study. The case study presented here aims to focus on three controllable reaction conditions: ionic strength (I), pH and added P concentration, to elucidate their effect on P colloid release. Our case study showed that these reaction conditions do not largely alter the release of colloidal P in Ultisols of the southeastern United States (mildly acidic native pH, low organic C). However, the availability of colloidal P was slightly enhanced at near neutral pH in high [P] or high I (0.1M) solutions. We further discussed these reaction conditions in selected literature studies to better assess the occurrence of colloid facilitated P transport in a wide variety of soil types and conditions.
•Acidic, low organic C soils, do not promote P transport via mobile soil colloids.•Experimental conditions affect the amount of phosphorus carried on soil colloids.•Increasing ionic strength promotes soil nanoparticle coagulation into colloids.•The coagulation properties of soil constituents are mineral-specific.</description><subject>agricultural soils</subject><subject>Agronomy. Soil science and plant productions</subject><subject>Availability</subject><subject>Biological and medical sciences</subject><subject>case studies</subject><subject>centrifugation</subject><subject>Colloid facilitated transport</subject><subject>Colloids</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>environmental factors</subject><subject>Exact sciences and technology</subject><subject>Filtration</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Geochemistry</subject><subject>ionic strength</subject><subject>Nanoparticles</subject><subject>Phosphate</subject><subject>Phosphorus</subject><subject>Reaction conditions</subject><subject>Runoff</subject><subject>Soil (material)</subject><subject>Soil and rock geochemistry</subject><subject>soil solution</subject><subject>Soils</subject><subject>Sorption</subject><subject>Surficial geology</subject><subject>Transport</subject><subject>Ultisols</subject><issn>0016-7061</issn><issn>1872-6259</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE-LFDEQxYMoOI5-Be2L4KV786-T6ZuyrLqwIKhzjjXpypoh0xlT3YLf3jSzet1DyKvwy6uqx9hrwTvBhbk6dveYRywn6CQXquO641I_YRuxs7I1sh-esg2vZGu5Ec_ZC6JjLS2XfMN-fEXwc8xT4_M0xlXRKueSU0M5plqklOPYBPAxxRlmHJvzz0z1lIWaggmBsIlTA_cl-iXNS4HU7NMcKSd6yZ4FSISvHu4t23-8-X79ub378un2-sNdC7rv59bwfgh1bKXtaHW_O-AhWFTGBA1wqGpQo61vRvcghLSjCP3OqiFoO1gFXG3Zu4vvueRfC9LsTpE8pgQT5oWcMFrK3iqpHkd7zq0RvLJbZi6oL5moYHDnEk9Q_jjB3Zq-O7p_6bs1fce1W9fYsrcPPYA8pFBg8pH-_5Z1R7WTpnJvLlyA7NYAye2_VaM6QnUb9LrY-wuBNb3fEYsjH3HyOMaCfnZjjo8N8xcEG6g0</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>VandeVoort, Allison Rick</creator><creator>Livi, Ken J.</creator><creator>Arai, Yuji</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20130901</creationdate><title>Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols</title><author>VandeVoort, Allison Rick ; Livi, Ken J. ; Arai, Yuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a455t-6059f024347d7458bebf7e366f4aab7e393d7ebf645a1127d1f58739f47973a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>agricultural soils</topic><topic>Agronomy. Soil science and plant productions</topic><topic>Availability</topic><topic>Biological and medical sciences</topic><topic>case studies</topic><topic>centrifugation</topic><topic>Colloid facilitated transport</topic><topic>Colloids</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>environmental factors</topic><topic>Exact sciences and technology</topic><topic>Filtration</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Geochemistry</topic><topic>ionic strength</topic><topic>Nanoparticles</topic><topic>Phosphate</topic><topic>Phosphorus</topic><topic>Reaction conditions</topic><topic>Runoff</topic><topic>Soil (material)</topic><topic>Soil and rock geochemistry</topic><topic>soil solution</topic><topic>Soils</topic><topic>Sorption</topic><topic>Surficial geology</topic><topic>Transport</topic><topic>Ultisols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>VandeVoort, Allison Rick</creatorcontrib><creatorcontrib>Livi, Ken J.</creatorcontrib><creatorcontrib>Arai, Yuji</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Geoderma</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>VandeVoort, Allison Rick</au><au>Livi, Ken J.</au><au>Arai, Yuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols</atitle><jtitle>Geoderma</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>206</volume><spage>101</spage><epage>111</epage><pages>101-111</pages><issn>0016-7061</issn><eissn>1872-6259</eissn><coden>GEDMAB</coden><abstract>Colloid (typically <1μm) facilitated phosphorus (P) transport in agricultural soils has received much research attention in recent decades due to the possibility of a mobile solid form of P, which may increase P runoff in some soils. The existing literature reports inconsistent results of colloidal P release as a percentage of total P in soil solution, separated at operationally defined size definitions by various centrifugation and/or filtration methods. The amount of total soil P attributed to colloidal particles remarkably ranges from 0 to 95%. The cause of colloidal P release has been difficult to assess since their experimental/environmental conditions (e.g., soil type, pH) vary from study to study. The case study presented here aims to focus on three controllable reaction conditions: ionic strength (I), pH and added P concentration, to elucidate their effect on P colloid release. Our case study showed that these reaction conditions do not largely alter the release of colloidal P in Ultisols of the southeastern United States (mildly acidic native pH, low organic C). However, the availability of colloidal P was slightly enhanced at near neutral pH in high [P] or high I (0.1M) solutions. We further discussed these reaction conditions in selected literature studies to better assess the occurrence of colloid facilitated P transport in a wide variety of soil types and conditions.
•Acidic, low organic C soils, do not promote P transport via mobile soil colloids.•Experimental conditions affect the amount of phosphorus carried on soil colloids.•Increasing ionic strength promotes soil nanoparticle coagulation into colloids.•The coagulation properties of soil constituents are mineral-specific.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.geoderma.2013.04.024</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-7061 |
ispartof | Geoderma, 2013-09, Vol.206, p.101-111 |
issn | 0016-7061 1872-6259 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642257323 |
source | Elsevier ScienceDirect Journals Complete |
subjects | agricultural soils Agronomy. Soil science and plant productions Availability Biological and medical sciences case studies centrifugation Colloid facilitated transport Colloids Earth sciences Earth, ocean, space environmental factors Exact sciences and technology Filtration Fundamental and applied biological sciences. Psychology Geochemistry ionic strength Nanoparticles Phosphate Phosphorus Reaction conditions Runoff Soil (material) Soil and rock geochemistry soil solution Soils Sorption Surficial geology Transport Ultisols |
title | Reaction conditions control soil colloid facilitated phosphorus release in agricultural Ultisols |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reaction%20conditions%20control%20soil%20colloid%20facilitated%20phosphorus%20release%20in%20agricultural%20Ultisols&rft.jtitle=Geoderma&rft.au=VandeVoort,%20Allison%20Rick&rft.date=2013-09-01&rft.volume=206&rft.spage=101&rft.epage=111&rft.pages=101-111&rft.issn=0016-7061&rft.eissn=1872-6259&rft.coden=GEDMAB&rft_id=info:doi/10.1016/j.geoderma.2013.04.024&rft_dat=%3Cproquest_cross%3E1500761032%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1500761032&rft_id=info:pmid/&rft_els_id=S0016706113001420&rfr_iscdi=true |