The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures
The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time b...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-07, Vol.609, p.116-124 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | |
container_start_page | 116 |
container_title | Materials science & engineering. A, Structural materials : properties, microstructure and processing |
container_volume | 609 |
creator | Lalpoor, M. Miroux, A. Mendis, C.L. Hort, N. Offerman, S.E. |
description | The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum. |
doi_str_mv | 10.1016/j.msea.2014.04.095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642254307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509314005590</els_id><sourcerecordid>1642254307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</originalsourceid><addsrcrecordid>eNp9kM9qGzEQxkVpoK6bF-hJl0Iv64yk1e4KeikmaQMJvfguxtrZVmb_RZINufUd8oZ5ksixyTEwMMzw-75hPsa-ClgJENXVbjVEwpUEUa4gl9Ef2EI0tSpKo6qPbAFGikKDUZ_Y5xh3AJkEvWBu84-4HxMFdMlPI586PgdyfvYJXxc4trylbgrDafZ5xbd-xPDI7_8-_39aI8e-nx45Jk49HTBRyxMNc_ZM-0DxC7vosI90ee5Ltrm53qx_F3d_ft2uf94VrqxVKiojpJGtqF2tJWKjtISuA0Jy1HQlOOG2lWwNlFKW0mAlVb1VjTYE29KBWrLvJ9s5TA97iskOPjrqexxp2kcrqizUpYI6o_KEujDFGKizc_BD_sgKsMdA7c4eA7XHQC3kMjqLvp39MTrsu4Cj8_FNKRtda1EduR8njvKvB0_BRudpdNT6HGyy7eTfO_MCTV6NDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642254307</pqid></control><display><type>article</type><title>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</title><source>Elsevier ScienceDirect Journals</source><creator>Lalpoor, M. ; Miroux, A. ; Mendis, C.L. ; Hort, N. ; Offerman, S.E.</creator><creatorcontrib>Lalpoor, M. ; Miroux, A. ; Mendis, C.L. ; Hort, N. ; Offerman, S.E.</creatorcontrib><description>The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2014.04.095</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aluminum base alloys ; Annealing ; Applied sciences ; Constants ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Heat treatment ; Magnesium ; Magnesium base alloys ; Materials scarcity ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Mg–Ca alloys ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitates ; Precipitation ; Precipitation hardening ; Production techniques ; Solid solution, precipitation, and dispersion hardening; aging ; Thermomechanical treatment ; Treatment of materials and its effects on microstructure and properties ; Work hardening</subject><ispartof>Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2014-07, Vol.609, p.116-124</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</citedby><cites>FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2014.04.095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28575165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalpoor, M.</creatorcontrib><creatorcontrib>Miroux, A.</creatorcontrib><creatorcontrib>Mendis, C.L.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Offerman, S.E.</creatorcontrib><title>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</title><title>Materials science & engineering. A, Structural materials : properties, microstructure and processing</title><description>The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.</description><subject>Aluminum base alloys</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Constants</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Materials scarcity</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Mg–Ca alloys</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Precipitation hardening</subject><subject>Production techniques</subject><subject>Solid solution, precipitation, and dispersion hardening; aging</subject><subject>Thermomechanical treatment</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>Work hardening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9qGzEQxkVpoK6bF-hJl0Iv64yk1e4KeikmaQMJvfguxtrZVmb_RZINufUd8oZ5ksixyTEwMMzw-75hPsa-ClgJENXVbjVEwpUEUa4gl9Ef2EI0tSpKo6qPbAFGikKDUZ_Y5xh3AJkEvWBu84-4HxMFdMlPI586PgdyfvYJXxc4trylbgrDafZ5xbd-xPDI7_8-_39aI8e-nx45Jk49HTBRyxMNc_ZM-0DxC7vosI90ee5Ltrm53qx_F3d_ft2uf94VrqxVKiojpJGtqF2tJWKjtISuA0Jy1HQlOOG2lWwNlFKW0mAlVb1VjTYE29KBWrLvJ9s5TA97iskOPjrqexxp2kcrqizUpYI6o_KEujDFGKizc_BD_sgKsMdA7c4eA7XHQC3kMjqLvp39MTrsu4Cj8_FNKRtda1EduR8njvKvB0_BRudpdNT6HGyy7eTfO_MCTV6NDA</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Lalpoor, M.</creator><creator>Miroux, A.</creator><creator>Mendis, C.L.</creator><creator>Hort, N.</creator><creator>Offerman, S.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140715</creationdate><title>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</title><author>Lalpoor, M. ; Miroux, A. ; Mendis, C.L. ; Hort, N. ; Offerman, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum base alloys</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Constants</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Materials scarcity</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Mg–Ca alloys</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Precipitation hardening</topic><topic>Production techniques</topic><topic>Solid solution, precipitation, and dispersion hardening; aging</topic><topic>Thermomechanical treatment</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalpoor, M.</creatorcontrib><creatorcontrib>Miroux, A.</creatorcontrib><creatorcontrib>Mendis, C.L.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Offerman, S.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalpoor, M.</au><au>Miroux, A.</au><au>Mendis, C.L.</au><au>Hort, N.</au><au>Offerman, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</atitle><jtitle>Materials science & engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2014-07-15</date><risdate>2014</risdate><volume>609</volume><spage>116</spage><epage>124</epage><pages>116-124</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2014.04.095</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5093 |
ispartof | Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2014-07, Vol.609, p.116-124 |
issn | 0921-5093 1873-4936 |
language | eng |
recordid | cdi_proquest_miscellaneous_1642254307 |
source | Elsevier ScienceDirect Journals |
subjects | Aluminum base alloys Annealing Applied sciences Constants Cross-disciplinary physics: materials science rheology Exact sciences and technology Heat treatment Magnesium Magnesium base alloys Materials scarcity Materials science Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology Metals. Metallurgy Mg–Ca alloys Phase diagrams and microstructures developed by solidification and solid-solid phase transformations Physics Precipitates Precipitation Precipitation hardening Production techniques Solid solution, precipitation, and dispersion hardening aging Thermomechanical treatment Treatment of materials and its effects on microstructure and properties Work hardening |
title | The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interaction%20of%20precipitation%20and%20deformation%20in%20a%20binary%20Mg%E2%80%93Ca%20alloy%20at%20elevated%20temperatures&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Lalpoor,%20M.&rft.date=2014-07-15&rft.volume=609&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2014.04.095&rft_dat=%3Cproquest_cross%3E1642254307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642254307&rft_id=info:pmid/&rft_els_id=S0921509314005590&rfr_iscdi=true |