The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures

The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-07, Vol.609, p.116-124
Hauptverfasser: Lalpoor, M., Miroux, A., Mendis, C.L., Hort, N., Offerman, S.E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue
container_start_page 116
container_title Materials science & engineering. A, Structural materials : properties, microstructure and processing
container_volume 609
creator Lalpoor, M.
Miroux, A.
Mendis, C.L.
Hort, N.
Offerman, S.E.
description The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.
doi_str_mv 10.1016/j.msea.2014.04.095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642254307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921509314005590</els_id><sourcerecordid>1642254307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</originalsourceid><addsrcrecordid>eNp9kM9qGzEQxkVpoK6bF-hJl0Iv64yk1e4KeikmaQMJvfguxtrZVmb_RZINufUd8oZ5ksixyTEwMMzw-75hPsa-ClgJENXVbjVEwpUEUa4gl9Ef2EI0tSpKo6qPbAFGikKDUZ_Y5xh3AJkEvWBu84-4HxMFdMlPI586PgdyfvYJXxc4trylbgrDafZ5xbd-xPDI7_8-_39aI8e-nx45Jk49HTBRyxMNc_ZM-0DxC7vosI90ee5Ltrm53qx_F3d_ft2uf94VrqxVKiojpJGtqF2tJWKjtISuA0Jy1HQlOOG2lWwNlFKW0mAlVb1VjTYE29KBWrLvJ9s5TA97iskOPjrqexxp2kcrqizUpYI6o_KEujDFGKizc_BD_sgKsMdA7c4eA7XHQC3kMjqLvp39MTrsu4Cj8_FNKRtda1EduR8njvKvB0_BRudpdNT6HGyy7eTfO_MCTV6NDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642254307</pqid></control><display><type>article</type><title>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</title><source>Elsevier ScienceDirect Journals</source><creator>Lalpoor, M. ; Miroux, A. ; Mendis, C.L. ; Hort, N. ; Offerman, S.E.</creator><creatorcontrib>Lalpoor, M. ; Miroux, A. ; Mendis, C.L. ; Hort, N. ; Offerman, S.E.</creatorcontrib><description>The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.</description><identifier>ISSN: 0921-5093</identifier><identifier>EISSN: 1873-4936</identifier><identifier>DOI: 10.1016/j.msea.2014.04.095</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Aluminum base alloys ; Annealing ; Applied sciences ; Constants ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Heat treatment ; Magnesium ; Magnesium base alloys ; Materials scarcity ; Materials science ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Mg–Ca alloys ; Phase diagrams and microstructures developed by solidification and solid-solid phase transformations ; Physics ; Precipitates ; Precipitation ; Precipitation hardening ; Production techniques ; Solid solution, precipitation, and dispersion hardening; aging ; Thermomechanical treatment ; Treatment of materials and its effects on microstructure and properties ; Work hardening</subject><ispartof>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing, 2014-07, Vol.609, p.116-124</ispartof><rights>2014 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</citedby><cites>FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.msea.2014.04.095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28575165$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalpoor, M.</creatorcontrib><creatorcontrib>Miroux, A.</creatorcontrib><creatorcontrib>Mendis, C.L.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Offerman, S.E.</creatorcontrib><title>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</title><title>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</title><description>The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.</description><subject>Aluminum base alloys</subject><subject>Annealing</subject><subject>Applied sciences</subject><subject>Constants</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Heat treatment</subject><subject>Magnesium</subject><subject>Magnesium base alloys</subject><subject>Materials scarcity</subject><subject>Materials science</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Mg–Ca alloys</subject><subject>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</subject><subject>Physics</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Precipitation hardening</subject><subject>Production techniques</subject><subject>Solid solution, precipitation, and dispersion hardening; aging</subject><subject>Thermomechanical treatment</subject><subject>Treatment of materials and its effects on microstructure and properties</subject><subject>Work hardening</subject><issn>0921-5093</issn><issn>1873-4936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9kM9qGzEQxkVpoK6bF-hJl0Iv64yk1e4KeikmaQMJvfguxtrZVmb_RZINufUd8oZ5ksixyTEwMMzw-75hPsa-ClgJENXVbjVEwpUEUa4gl9Ef2EI0tSpKo6qPbAFGikKDUZ_Y5xh3AJkEvWBu84-4HxMFdMlPI586PgdyfvYJXxc4trylbgrDafZ5xbd-xPDI7_8-_39aI8e-nx45Jk49HTBRyxMNc_ZM-0DxC7vosI90ee5Ltrm53qx_F3d_ft2uf94VrqxVKiojpJGtqF2tJWKjtISuA0Jy1HQlOOG2lWwNlFKW0mAlVb1VjTYE29KBWrLvJ9s5TA97iskOPjrqexxp2kcrqizUpYI6o_KEujDFGKizc_BD_sgKsMdA7c4eA7XHQC3kMjqLvp39MTrsu4Cj8_FNKRtda1EduR8njvKvB0_BRudpdNT6HGyy7eTfO_MCTV6NDA</recordid><startdate>20140715</startdate><enddate>20140715</enddate><creator>Lalpoor, M.</creator><creator>Miroux, A.</creator><creator>Mendis, C.L.</creator><creator>Hort, N.</creator><creator>Offerman, S.E.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140715</creationdate><title>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</title><author>Lalpoor, M. ; Miroux, A. ; Mendis, C.L. ; Hort, N. ; Offerman, S.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-691292d17c752aa83520ff0eaece8f40c1cb62d90422429a6237b3859e0b4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum base alloys</topic><topic>Annealing</topic><topic>Applied sciences</topic><topic>Constants</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Heat treatment</topic><topic>Magnesium</topic><topic>Magnesium base alloys</topic><topic>Materials scarcity</topic><topic>Materials science</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Mg–Ca alloys</topic><topic>Phase diagrams and microstructures developed by solidification and solid-solid phase transformations</topic><topic>Physics</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Precipitation hardening</topic><topic>Production techniques</topic><topic>Solid solution, precipitation, and dispersion hardening; aging</topic><topic>Thermomechanical treatment</topic><topic>Treatment of materials and its effects on microstructure and properties</topic><topic>Work hardening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalpoor, M.</creatorcontrib><creatorcontrib>Miroux, A.</creatorcontrib><creatorcontrib>Mendis, C.L.</creatorcontrib><creatorcontrib>Hort, N.</creatorcontrib><creatorcontrib>Offerman, S.E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalpoor, M.</au><au>Miroux, A.</au><au>Mendis, C.L.</au><au>Hort, N.</au><au>Offerman, S.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures</atitle><jtitle>Materials science &amp; engineering. A, Structural materials : properties, microstructure and processing</jtitle><date>2014-07-15</date><risdate>2014</risdate><volume>609</volume><spage>116</spage><epage>124</epage><pages>116-124</pages><issn>0921-5093</issn><eissn>1873-4936</eissn><abstract>The effect of pre-deformation on precipitation hardening response as well as the work-hardening behavior of a binary Mg–Ca alloy are investigated. Our results show that application of 5% pre-deformation increases the precipitation hardening response of the material and decreases the annealing time by 50%. The dislocations introduced during the pre-deformation process act as predominant nucleation sites and result in a higher number of precipitates of smaller size. During the thermomechanical treatments, the work hardening behavior is altered by the state of the precipitates, namely, under-aged, peak-aged and over-aged. After the elastic–plastic transition, under-aged and peak-aged materials show a continuously decreasing work-hardening rate, while the over-aged material has an initial constant work-hardening rate. The absolute values of the work hardening rate are far less sensitive to the precipitation stage compared to aluminum alloys; a fact that explains the low work hardening capacity of magnesium compared to aluminum.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.msea.2014.04.095</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0921-5093
ispartof Materials science & engineering. A, Structural materials : properties, microstructure and processing, 2014-07, Vol.609, p.116-124
issn 0921-5093
1873-4936
language eng
recordid cdi_proquest_miscellaneous_1642254307
source Elsevier ScienceDirect Journals
subjects Aluminum base alloys
Annealing
Applied sciences
Constants
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Heat treatment
Magnesium
Magnesium base alloys
Materials scarcity
Materials science
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Mg–Ca alloys
Phase diagrams and microstructures developed by solidification and solid-solid phase transformations
Physics
Precipitates
Precipitation
Precipitation hardening
Production techniques
Solid solution, precipitation, and dispersion hardening
aging
Thermomechanical treatment
Treatment of materials and its effects on microstructure and properties
Work hardening
title The interaction of precipitation and deformation in a binary Mg–Ca alloy at elevated temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20interaction%20of%20precipitation%20and%20deformation%20in%20a%20binary%20Mg%E2%80%93Ca%20alloy%20at%20elevated%20temperatures&rft.jtitle=Materials%20science%20&%20engineering.%20A,%20Structural%20materials%20:%20properties,%20microstructure%20and%20processing&rft.au=Lalpoor,%20M.&rft.date=2014-07-15&rft.volume=609&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.issn=0921-5093&rft.eissn=1873-4936&rft_id=info:doi/10.1016/j.msea.2014.04.095&rft_dat=%3Cproquest_cross%3E1642254307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642254307&rft_id=info:pmid/&rft_els_id=S0921509314005590&rfr_iscdi=true