Compositional evolution of Q-phase precipitates in an aluminum alloy

Lightweight, age-hardenable aluminum alloys are attracting increasing attention as a means to reduce vehicle mass and improve fuel economy. To accelerate the adoption of these alloys, knowledge of the complex precipitation processes that underlie their primary strengthening mechanism is essential. H...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta materialia 2014-08, Vol.75, p.322-336
Hauptverfasser: Biswas, Aniruddha, Siegel, Donald J., Seidman, David N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 336
container_issue
container_start_page 322
container_title Acta materialia
container_volume 75
creator Biswas, Aniruddha
Siegel, Donald J.
Seidman, David N.
description Lightweight, age-hardenable aluminum alloys are attracting increasing attention as a means to reduce vehicle mass and improve fuel economy. To accelerate the adoption of these alloys, knowledge of the complex precipitation processes that underlie their primary strengthening mechanism is essential. Here we employ a combination of atom-probe tomography (APT), differential scanning calorimetry (DSC), transmission electron-microscopy, X-ray diffraction and first-principles calculations to reveal the compositional evolution of Q-phase precipitates in a commercial, age-hardenable aluminum alloy, W319. Three different aging conditions are investigated: 438K/8h, 463K/8h and 533K/4h. Co-precipitation of θ′- and Q-phase precipitates is observed for all aging conditions, which, when combined with DSC analysis of the precipitation sequence, suggests that Q-phase precipitates serve as heterogeneous nucleation sites for θ′-platelets. Regarding composition evolution, aging at the lower temperatures yields Q-phase precipitates that are Cu-rich, yet deficient in Mg and Si: 44Al–22Cu–16Mg–16.5Siat.%. The composition evolves to become Mg-rich after aging at 533K: ∼28Al–9Cu–37Mg–26Siat.%. APT provides evidence for partitioning of Zn to the Q-phase precipitates. The energetics of Zn partitioning was evaluated using first-principles calculations, and suggests that this partitioning is a kinetic effect. Our analyses provide new insights into the complex precipitation processes in commercial Al alloys, and should foster the enhancement of alloy performance through optimization of aging conditions.
doi_str_mv 10.1016/j.actamat.2014.05.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1642250937</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645414003395</els_id><sourcerecordid>1642250937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-f79645325aa50b4c01318a411cdf614da8ff60e05fe1a0e4e155ffb3879697453</originalsourceid><addsrcrecordid>eNqFkFtLxDAQhYsouK7-BKEvgi-tkzbp5UlkvcKCCPocZtMJZmmb2qQL--9N2cVXYWDOwzlz-aLomkHKgBV32xSVxw59mgHjKYgUgJ1EC1aVeZJxkZ8GnYs6Kbjg59GFc9tgyEoOi-hxZbvBOuON7bGNaWfbadax1fFHMnyjo3gYSZnBePTkYtPHGKqdOtNPXRCt3V9GZxpbR1fHvoy-np8-V6_J-v3lbfWwThQva5_osg4X5JlAFLDhCljOKuSMqUYXjDdYaV0AgdDEEIgTE0LrTV6FXF2G5DK6PcwdRvszkfOyM05R22JPdnKSFTzLBNR5GaziYFWjdW4kLYfRdDjuJQM5U5NbeaQmZ2oShAxQQu7muAKdwlaP2Cvj_sJZVQAUMM-_P_go_LszNEqnDPWKGhNoedlY88-mX3T6hOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1642250937</pqid></control><display><type>article</type><title>Compositional evolution of Q-phase precipitates in an aluminum alloy</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Biswas, Aniruddha ; Siegel, Donald J. ; Seidman, David N.</creator><creatorcontrib>Biswas, Aniruddha ; Siegel, Donald J. ; Seidman, David N.</creatorcontrib><description>Lightweight, age-hardenable aluminum alloys are attracting increasing attention as a means to reduce vehicle mass and improve fuel economy. To accelerate the adoption of these alloys, knowledge of the complex precipitation processes that underlie their primary strengthening mechanism is essential. Here we employ a combination of atom-probe tomography (APT), differential scanning calorimetry (DSC), transmission electron-microscopy, X-ray diffraction and first-principles calculations to reveal the compositional evolution of Q-phase precipitates in a commercial, age-hardenable aluminum alloy, W319. Three different aging conditions are investigated: 438K/8h, 463K/8h and 533K/4h. Co-precipitation of θ′- and Q-phase precipitates is observed for all aging conditions, which, when combined with DSC analysis of the precipitation sequence, suggests that Q-phase precipitates serve as heterogeneous nucleation sites for θ′-platelets. Regarding composition evolution, aging at the lower temperatures yields Q-phase precipitates that are Cu-rich, yet deficient in Mg and Si: 44Al–22Cu–16Mg–16.5Siat.%. The composition evolves to become Mg-rich after aging at 533K: ∼28Al–9Cu–37Mg–26Siat.%. APT provides evidence for partitioning of Zn to the Q-phase precipitates. The energetics of Zn partitioning was evaluated using first-principles calculations, and suggests that this partitioning is a kinetic effect. Our analyses provide new insights into the complex precipitation processes in commercial Al alloys, and should foster the enhancement of alloy performance through optimization of aging conditions.</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2014.05.001</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Aluminum alloys ; Aluminum base alloys ; Applied sciences ; Atom-probe tomography ; Differential scanning calorimetry ; Evolution ; Exact sciences and technology ; First-principles calculations ; Focused-ion beam (FIB) machining ; Magnesium ; Mathematical analysis ; Metals. Metallurgy ; Partitioning ; Precipitates ; Precipitation ; Q-phase precipitates</subject><ispartof>Acta materialia, 2014-08, Vol.75, p.322-336</ispartof><rights>2014 Acta Materialia Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-f79645325aa50b4c01318a411cdf614da8ff60e05fe1a0e4e155ffb3879697453</citedby><cites>FETCH-LOGICAL-c479t-f79645325aa50b4c01318a411cdf614da8ff60e05fe1a0e4e155ffb3879697453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.actamat.2014.05.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28600607$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Biswas, Aniruddha</creatorcontrib><creatorcontrib>Siegel, Donald J.</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><title>Compositional evolution of Q-phase precipitates in an aluminum alloy</title><title>Acta materialia</title><description>Lightweight, age-hardenable aluminum alloys are attracting increasing attention as a means to reduce vehicle mass and improve fuel economy. To accelerate the adoption of these alloys, knowledge of the complex precipitation processes that underlie their primary strengthening mechanism is essential. Here we employ a combination of atom-probe tomography (APT), differential scanning calorimetry (DSC), transmission electron-microscopy, X-ray diffraction and first-principles calculations to reveal the compositional evolution of Q-phase precipitates in a commercial, age-hardenable aluminum alloy, W319. Three different aging conditions are investigated: 438K/8h, 463K/8h and 533K/4h. Co-precipitation of θ′- and Q-phase precipitates is observed for all aging conditions, which, when combined with DSC analysis of the precipitation sequence, suggests that Q-phase precipitates serve as heterogeneous nucleation sites for θ′-platelets. Regarding composition evolution, aging at the lower temperatures yields Q-phase precipitates that are Cu-rich, yet deficient in Mg and Si: 44Al–22Cu–16Mg–16.5Siat.%. The composition evolves to become Mg-rich after aging at 533K: ∼28Al–9Cu–37Mg–26Siat.%. APT provides evidence for partitioning of Zn to the Q-phase precipitates. The energetics of Zn partitioning was evaluated using first-principles calculations, and suggests that this partitioning is a kinetic effect. Our analyses provide new insights into the complex precipitation processes in commercial Al alloys, and should foster the enhancement of alloy performance through optimization of aging conditions.</description><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Applied sciences</subject><subject>Atom-probe tomography</subject><subject>Differential scanning calorimetry</subject><subject>Evolution</subject><subject>Exact sciences and technology</subject><subject>First-principles calculations</subject><subject>Focused-ion beam (FIB) machining</subject><subject>Magnesium</subject><subject>Mathematical analysis</subject><subject>Metals. Metallurgy</subject><subject>Partitioning</subject><subject>Precipitates</subject><subject>Precipitation</subject><subject>Q-phase precipitates</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLxDAQhYsouK7-BKEvgi-tkzbp5UlkvcKCCPocZtMJZmmb2qQL--9N2cVXYWDOwzlz-aLomkHKgBV32xSVxw59mgHjKYgUgJ1EC1aVeZJxkZ8GnYs6Kbjg59GFc9tgyEoOi-hxZbvBOuON7bGNaWfbadax1fFHMnyjo3gYSZnBePTkYtPHGKqdOtNPXRCt3V9GZxpbR1fHvoy-np8-V6_J-v3lbfWwThQva5_osg4X5JlAFLDhCljOKuSMqUYXjDdYaV0AgdDEEIgTE0LrTV6FXF2G5DK6PcwdRvszkfOyM05R22JPdnKSFTzLBNR5GaziYFWjdW4kLYfRdDjuJQM5U5NbeaQmZ2oShAxQQu7muAKdwlaP2Cvj_sJZVQAUMM-_P_go_LszNEqnDPWKGhNoedlY88-mX3T6hOg</recordid><startdate>20140815</startdate><enddate>20140815</enddate><creator>Biswas, Aniruddha</creator><creator>Siegel, Donald J.</creator><creator>Seidman, David N.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140815</creationdate><title>Compositional evolution of Q-phase precipitates in an aluminum alloy</title><author>Biswas, Aniruddha ; Siegel, Donald J. ; Seidman, David N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-f79645325aa50b4c01318a411cdf614da8ff60e05fe1a0e4e155ffb3879697453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Applied sciences</topic><topic>Atom-probe tomography</topic><topic>Differential scanning calorimetry</topic><topic>Evolution</topic><topic>Exact sciences and technology</topic><topic>First-principles calculations</topic><topic>Focused-ion beam (FIB) machining</topic><topic>Magnesium</topic><topic>Mathematical analysis</topic><topic>Metals. Metallurgy</topic><topic>Partitioning</topic><topic>Precipitates</topic><topic>Precipitation</topic><topic>Q-phase precipitates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Biswas, Aniruddha</creatorcontrib><creatorcontrib>Siegel, Donald J.</creatorcontrib><creatorcontrib>Seidman, David N.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Biswas, Aniruddha</au><au>Siegel, Donald J.</au><au>Seidman, David N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compositional evolution of Q-phase precipitates in an aluminum alloy</atitle><jtitle>Acta materialia</jtitle><date>2014-08-15</date><risdate>2014</risdate><volume>75</volume><spage>322</spage><epage>336</epage><pages>322-336</pages><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>Lightweight, age-hardenable aluminum alloys are attracting increasing attention as a means to reduce vehicle mass and improve fuel economy. To accelerate the adoption of these alloys, knowledge of the complex precipitation processes that underlie their primary strengthening mechanism is essential. Here we employ a combination of atom-probe tomography (APT), differential scanning calorimetry (DSC), transmission electron-microscopy, X-ray diffraction and first-principles calculations to reveal the compositional evolution of Q-phase precipitates in a commercial, age-hardenable aluminum alloy, W319. Three different aging conditions are investigated: 438K/8h, 463K/8h and 533K/4h. Co-precipitation of θ′- and Q-phase precipitates is observed for all aging conditions, which, when combined with DSC analysis of the precipitation sequence, suggests that Q-phase precipitates serve as heterogeneous nucleation sites for θ′-platelets. Regarding composition evolution, aging at the lower temperatures yields Q-phase precipitates that are Cu-rich, yet deficient in Mg and Si: 44Al–22Cu–16Mg–16.5Siat.%. The composition evolves to become Mg-rich after aging at 533K: ∼28Al–9Cu–37Mg–26Siat.%. APT provides evidence for partitioning of Zn to the Q-phase precipitates. The energetics of Zn partitioning was evaluated using first-principles calculations, and suggests that this partitioning is a kinetic effect. Our analyses provide new insights into the complex precipitation processes in commercial Al alloys, and should foster the enhancement of alloy performance through optimization of aging conditions.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2014.05.001</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1359-6454
ispartof Acta materialia, 2014-08, Vol.75, p.322-336
issn 1359-6454
1873-2453
language eng
recordid cdi_proquest_miscellaneous_1642250937
source Elsevier ScienceDirect Journals Complete
subjects Aluminum alloys
Aluminum base alloys
Applied sciences
Atom-probe tomography
Differential scanning calorimetry
Evolution
Exact sciences and technology
First-principles calculations
Focused-ion beam (FIB) machining
Magnesium
Mathematical analysis
Metals. Metallurgy
Partitioning
Precipitates
Precipitation
Q-phase precipitates
title Compositional evolution of Q-phase precipitates in an aluminum alloy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T11%3A25%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compositional%20evolution%20of%20Q-phase%20precipitates%20in%20an%20aluminum%20alloy&rft.jtitle=Acta%20materialia&rft.au=Biswas,%20Aniruddha&rft.date=2014-08-15&rft.volume=75&rft.spage=322&rft.epage=336&rft.pages=322-336&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2014.05.001&rft_dat=%3Cproquest_cross%3E1642250937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1642250937&rft_id=info:pmid/&rft_els_id=S1359645414003395&rfr_iscdi=true